12 KiB
Benchmarks test LLM comprehension across different input formats using 204 data retrieval questions on 4 models.
Show Dataset Catalog
Dataset Catalog
| Dataset | Rows | Structure | CSV Support | Eligibility |
|---|---|---|---|---|
| Uniform employee records | 100 | uniform | ✓ | 100% |
| E-commerce orders with nested structures | 50 | nested | ✗ | 33% |
| Time-series analytics data | 60 | uniform | ✓ | 100% |
| Top 100 GitHub repositories | 100 | uniform | ✓ | 100% |
| Semi-uniform event logs | 75 | semi-uniform | ✗ | 50% |
| Deeply nested configuration | 11 | deep | ✗ | 0% |
Structure classes:
- uniform: All objects have identical fields with primitive values
- semi-uniform: Mix of uniform and non-uniform structures
- nested: Objects with nested structures (nested objects or arrays)
- deep: Highly nested with minimal tabular eligibility
CSV Support: ✓ (supported), ✗ (not supported – would require lossy flattening)
Eligibility: Percentage of arrays that qualify for TOON's tabular format (uniform objects with primitive values)
Efficiency Ranking (Accuracy per 1K Tokens)
Each format's overall performance, balancing accuracy against token cost:
TOON ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 17.2 │ 75.5% acc │ 4,389 tokens
CSV ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░ 16.6 │ 67.8% acc │ 4,080 tokens
JSON compact ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░ 14.7 │ 73.3% acc │ 4,982 tokens
YAML ▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░ 12.1 │ 72.4% acc │ 5,976 tokens
JSON ▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░░░ 10.0 │ 72.4% acc │ 7,260 tokens
XML ▓▓▓▓▓▓▓▓▓▓░░░░░░░░░░ 8.4 │ 69.0% acc │ 8,251 tokens
TOON achieves 75.5% accuracy (vs JSON's 72.4%) while using 39.5% fewer tokens.
Per-Model Accuracy
Accuracy across 4 LLMs on 204 data retrieval questions:
claude-haiku-4-5-20251001
→ TOON ████████████░░░░░░░░ 62.3% (127/204)
JSON ███████████░░░░░░░░░ 56.9% (116/204)
YAML ███████████░░░░░░░░░ 55.9% (114/204)
JSON compact ███████████░░░░░░░░░ 54.9% (112/204)
XML ███████████░░░░░░░░░ 54.9% (112/204)
CSV █████████░░░░░░░░░░░ 47.1% (49/104)
gemini-2.5-flash
→ TOON ██████████████████░░ 91.2% (186/204)
YAML ██████████████████░░ 89.7% (183/204)
JSON compact ██████████████████░░ 87.7% (179/204)
JSON ██████████████████░░ 87.7% (179/204)
XML █████████████████░░░ 87.3% (178/204)
CSV █████████████████░░░ 85.6% (89/104)
gpt-5-nano
JSON compact ███████████████████░ 93.6% (191/204)
CSV ██████████████████░░ 90.4% (94/104)
JSON ██████████████████░░ 89.7% (183/204)
→ TOON ██████████████████░░ 89.2% (182/204)
YAML ██████████████████░░ 89.2% (182/204)
XML ████████████████░░░░ 81.4% (166/204)
grok-4-fast-non-reasoning
→ TOON ████████████░░░░░░░░ 59.3% (121/204)
JSON compact ███████████░░░░░░░░░ 56.9% (116/204)
JSON ███████████░░░░░░░░░ 55.4% (113/204)
YAML ███████████░░░░░░░░░ 54.9% (112/204)
XML ██████████░░░░░░░░░░ 52.5% (107/204)
CSV ██████████░░░░░░░░░░ 48.1% (50/104)
Key tradeoff: TOON achieves 75.5% accuracy (vs JSON's 72.4%) while using 39.5% fewer tokens on these datasets.
Performance by dataset, model, and question type
Performance by Question Type
| Question Type | TOON | JSON compact | JSON | YAML | XML | CSV |
|---|---|---|---|---|---|---|
| Field Retrieval | 100.0% | 98.9% | 99.6% | 99.3% | 98.5% | 100.0% |
| Aggregation | 56.3% | 52.4% | 53.2% | 53.2% | 47.2% | 40.5% |
| Filtering | 58.9% | 58.3% | 54.2% | 53.1% | 50.5% | 49.1% |
| Structure Awareness | 89.0% | 85.0% | 82.0% | 85.0% | 79.0% | 84.4% |
Performance by Dataset
Uniform employee records
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
70.7% | 2,337 | 116/164 |
toon |
72.0% | 2,483 | 118/164 |
json-compact |
71.3% | 3,943 | 117/164 |
yaml |
70.1% | 4,969 | 115/164 |
json-pretty |
72.6% | 6,347 | 119/164 |
xml |
70.7% | 7,314 | 116/164 |
E-commerce orders with nested structures
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
83.5% | 7,197 | 137/164 |
json-compact |
79.3% | 6,784 | 130/164 |
yaml |
78.7% | 8,334 | 129/164 |
json-pretty |
78.7% | 10,700 | 129/164 |
xml |
73.8% | 12,013 | 121/164 |
Time-series analytics data
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
75.8% | 1,513 | 91/120 |
csv |
72.5% | 1,391 | 87/120 |
json-compact |
70.0% | 2,339 | 84/120 |
yaml |
70.0% | 2,936 | 84/120 |
json-pretty |
71.7% | 3,663 | 86/120 |
xml |
71.7% | 4,374 | 86/120 |
Top 100 GitHub repositories
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
64.4% | 8,745 | 85/132 |
csv |
59.8% | 8,513 | 79/132 |
json-compact |
60.6% | 11,455 | 80/132 |
yaml |
61.4% | 13,129 | 81/132 |
json-pretty |
59.1% | 15,145 | 78/132 |
xml |
51.5% | 17,095 | 68/132 |
Semi-uniform event logs
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
json-compact |
67.5% | 4,809 | 81/120 |
yaml |
63.3% | 5,814 | 76/120 |
toon |
62.5% | 5,764 | 75/120 |
json-pretty |
59.2% | 6,784 | 71/120 |
xml |
55.0% | 7,699 | 66/120 |
Deeply nested configuration
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
json-compact |
91.4% | 564 | 106/116 |
toon |
94.8% | 631 | 110/116 |
yaml |
91.4% | 673 | 106/116 |
json-pretty |
93.1% | 919 | 108/116 |
xml |
91.4% | 1,008 | 106/116 |
Performance by Model
claude-haiku-4-5-20251001
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
62.3% | 127/204 |
json-pretty |
56.9% | 116/204 |
yaml |
55.9% | 114/204 |
json-compact |
54.9% | 112/204 |
xml |
54.9% | 112/204 |
csv |
47.1% | 49/104 |
gemini-2.5-flash
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
91.2% | 186/204 |
yaml |
89.7% | 183/204 |
json-compact |
87.7% | 179/204 |
json-pretty |
87.7% | 179/204 |
xml |
87.3% | 178/204 |
csv |
85.6% | 89/104 |
gpt-5-nano
| Format | Accuracy | Correct/Total |
|---|---|---|
json-compact |
93.6% | 191/204 |
csv |
90.4% | 94/104 |
json-pretty |
89.7% | 183/204 |
toon |
89.2% | 182/204 |
yaml |
89.2% | 182/204 |
xml |
81.4% | 166/204 |
grok-4-fast-non-reasoning
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
59.3% | 121/204 |
json-compact |
56.9% | 116/204 |
json-pretty |
55.4% | 113/204 |
yaml |
54.9% | 112/204 |
xml |
52.5% | 107/204 |
csv |
48.1% | 50/104 |
How the benchmark works
What's Being Measured
This benchmark tests LLM comprehension and data retrieval accuracy across different input formats. Each LLM receives formatted data and must answer questions about it (this does not test model's ability to generate TOON output).
Datasets Tested
Six datasets designed to test different structural patterns:
- Tabular (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
- Nested (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
- Analytics (60 days of metrics): Time-series data with dates and numeric values.
- GitHub (100 repositories): Real-world data from top GitHub repos by stars.
- Event Logs (75 logs): Semi-uniform data with ~50% flat logs and ~50% with nested error objects.
- Nested Config (1 configuration): Deeply nested configuration with minimal tabular eligibility.
Question Types
204 questions are generated dynamically across four categories:
-
Field retrieval (33%): Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)
- Example: "What is Alice's salary?" →
75000 - Example: "How many items are in order ORD-0042?" →
3 - Example: "What is the customer name for order ORD-0042?" →
John Doe
- Example: "What is Alice's salary?" →
-
Aggregation (31%): Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)
- Example: "How many employees work in Engineering?" →
17 - Example: "What is the total revenue across all orders?" →
45123.50 - Example: "How many employees have salary > 80000?" →
23
- Example: "How many employees work in Engineering?" →
-
Filtering (24%): Multi-condition queries requiring compound logic (AND constraints across fields)
- Example: "How many employees in Sales have salary > 80000?" →
5 - Example: "How many active employees have more than 10 years of experience?" →
8
- Example: "How many employees in Sales have salary > 80000?" →
-
Structure awareness (12%): Tests format-native structural affordances (TOON's [N] count and {fields}, CSV's header row)
- Example: "How many employees are in the dataset?" →
100 - Example: "List the field names for employees" →
id, name, email, department, salary, yearsExperience, active - Example: "What is the department of the last employee?" →
Sales
- Example: "How many employees are in the dataset?" →
Evaluation Process
- Format conversion: Each dataset is converted to all 6 formats (TOON, JSON compact, JSON, YAML, XML, CSV).
- Query LLM: Each model receives formatted data + question in a prompt and extracts the answer.
- Validate with LLM-as-judge:
gpt-5-nanovalidates if the answer is semantically correct (e.g.,50000=$50,000,Engineering=engineering,2025-01-01=January 1, 2025).
Models & Configuration
- Models tested:
claude-haiku-4-5-20251001,gemini-2.5-flash,gpt-5-nano,grok-4-fast-non-reasoning - Token counting: Using
gpt-tokenizerwitho200k_baseencoding (GPT-5 tokenizer) - Temperature: Not set (models use their defaults)
- Total evaluations: 204 questions × 6 formats × 4 models = 4,896 LLM calls