Benchmarks test LLM comprehension across different input formats using 204 data retrieval questions on 4 models.
Show Dataset Catalog #### Dataset Catalog | Dataset | Rows | Structure | CSV Support | Eligibility | | ------- | ---- | --------- | ----------- | ----------- | | Uniform employee records | 100 | uniform | ✓ | 100% | | E-commerce orders with nested structures | 50 | nested | ✗ | 33% | | Time-series analytics data | 60 | uniform | ✓ | 100% | | Top 100 GitHub repositories | 100 | uniform | ✓ | 100% | | Semi-uniform event logs | 75 | semi-uniform | ✗ | 50% | | Deeply nested configuration | 11 | deep | ✗ | 0% | **Structure classes:** - **uniform**: All objects have identical fields with primitive values - **semi-uniform**: Mix of uniform and non-uniform structures - **nested**: Objects with nested structures (nested objects or arrays) - **deep**: Highly nested with minimal tabular eligibility **CSV Support:** ✓ (supported), ✗ (not supported – would require lossy flattening) **Eligibility:** Percentage of arrays that qualify for TOON's tabular format (uniform objects with primitive values)
#### Efficiency Ranking (Accuracy per 1K Tokens) Each format's overall performance, balancing accuracy against token cost: ``` TOON ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 17.2 │ 75.5% acc │ 4,389 tokens CSV ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░ 16.6 │ 67.8% acc │ 4,080 tokens JSON compact ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░ 14.7 │ 73.3% acc │ 4,982 tokens YAML ▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░ 12.1 │ 72.4% acc │ 5,976 tokens JSON ▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░░░ 10.0 │ 72.4% acc │ 7,260 tokens XML ▓▓▓▓▓▓▓▓▓▓░░░░░░░░░░ 8.4 │ 69.0% acc │ 8,251 tokens ``` TOON achieves **75.5%** accuracy (vs JSON's 72.4%) while using **39.5% fewer tokens**. #### Per-Model Accuracy Accuracy across 4 LLMs on 204 data retrieval questions: ``` claude-haiku-4-5-20251001 → TOON ████████████░░░░░░░░ 62.3% (127/204) JSON ███████████░░░░░░░░░ 56.9% (116/204) YAML ███████████░░░░░░░░░ 55.9% (114/204) JSON compact ███████████░░░░░░░░░ 54.9% (112/204) XML ███████████░░░░░░░░░ 54.9% (112/204) CSV █████████░░░░░░░░░░░ 47.1% (49/104) gemini-2.5-flash → TOON ██████████████████░░ 91.2% (186/204) YAML ██████████████████░░ 89.7% (183/204) JSON compact ██████████████████░░ 87.7% (179/204) JSON ██████████████████░░ 87.7% (179/204) XML █████████████████░░░ 87.3% (178/204) CSV █████████████████░░░ 85.6% (89/104) gpt-5-nano JSON compact ███████████████████░ 93.6% (191/204) CSV ██████████████████░░ 90.4% (94/104) JSON ██████████████████░░ 89.7% (183/204) → TOON ██████████████████░░ 89.2% (182/204) YAML ██████████████████░░ 89.2% (182/204) XML ████████████████░░░░ 81.4% (166/204) grok-4-fast-non-reasoning → TOON ████████████░░░░░░░░ 59.3% (121/204) JSON compact ███████████░░░░░░░░░ 56.9% (116/204) JSON ███████████░░░░░░░░░ 55.4% (113/204) YAML ███████████░░░░░░░░░ 54.9% (112/204) XML ██████████░░░░░░░░░░ 52.5% (107/204) CSV ██████████░░░░░░░░░░ 48.1% (50/104) ``` **Key tradeoff:** TOON achieves **75.5% accuracy** (vs JSON's 72.4%) while using **39.5% fewer tokens** on these datasets.
Performance by dataset, model, and question type #### Performance by Question Type | Question Type | TOON | JSON compact | JSON | YAML | XML | CSV | | ------------- | ---- | ---- | ---- | ---- | ---- | ---- | | Field Retrieval | 100.0% | 98.9% | 99.6% | 99.3% | 98.5% | 100.0% | | Aggregation | 56.3% | 52.4% | 53.2% | 53.2% | 47.2% | 40.5% | | Filtering | 58.9% | 58.3% | 54.2% | 53.1% | 50.5% | 49.1% | | Structure Awareness | 89.0% | 85.0% | 82.0% | 85.0% | 79.0% | 84.4% | #### Performance by Dataset ##### Uniform employee records | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 70.7% | 2,337 | 116/164 | | `toon` | 72.0% | 2,483 | 118/164 | | `json-compact` | 71.3% | 3,943 | 117/164 | | `yaml` | 70.1% | 4,969 | 115/164 | | `json-pretty` | 72.6% | 6,347 | 119/164 | | `xml` | 70.7% | 7,314 | 116/164 | ##### E-commerce orders with nested structures | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 83.5% | 7,197 | 137/164 | | `json-compact` | 79.3% | 6,784 | 130/164 | | `yaml` | 78.7% | 8,334 | 129/164 | | `json-pretty` | 78.7% | 10,700 | 129/164 | | `xml` | 73.8% | 12,013 | 121/164 | ##### Time-series analytics data | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 75.8% | 1,513 | 91/120 | | `csv` | 72.5% | 1,391 | 87/120 | | `json-compact` | 70.0% | 2,339 | 84/120 | | `yaml` | 70.0% | 2,936 | 84/120 | | `json-pretty` | 71.7% | 3,663 | 86/120 | | `xml` | 71.7% | 4,374 | 86/120 | ##### Top 100 GitHub repositories | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 64.4% | 8,745 | 85/132 | | `csv` | 59.8% | 8,513 | 79/132 | | `json-compact` | 60.6% | 11,455 | 80/132 | | `yaml` | 61.4% | 13,129 | 81/132 | | `json-pretty` | 59.1% | 15,145 | 78/132 | | `xml` | 51.5% | 17,095 | 68/132 | ##### Semi-uniform event logs | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 67.5% | 4,809 | 81/120 | | `yaml` | 63.3% | 5,814 | 76/120 | | `toon` | 62.5% | 5,764 | 75/120 | | `json-pretty` | 59.2% | 6,784 | 71/120 | | `xml` | 55.0% | 7,699 | 66/120 | ##### Deeply nested configuration | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 91.4% | 564 | 106/116 | | `toon` | 94.8% | 631 | 110/116 | | `yaml` | 91.4% | 673 | 106/116 | | `json-pretty` | 93.1% | 919 | 108/116 | | `xml` | 91.4% | 1,008 | 106/116 | #### Performance by Model ##### claude-haiku-4-5-20251001 | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 62.3% | 127/204 | | `json-pretty` | 56.9% | 116/204 | | `yaml` | 55.9% | 114/204 | | `json-compact` | 54.9% | 112/204 | | `xml` | 54.9% | 112/204 | | `csv` | 47.1% | 49/104 | ##### gemini-2.5-flash | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 91.2% | 186/204 | | `yaml` | 89.7% | 183/204 | | `json-compact` | 87.7% | 179/204 | | `json-pretty` | 87.7% | 179/204 | | `xml` | 87.3% | 178/204 | | `csv` | 85.6% | 89/104 | ##### gpt-5-nano | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `json-compact` | 93.6% | 191/204 | | `csv` | 90.4% | 94/104 | | `json-pretty` | 89.7% | 183/204 | | `toon` | 89.2% | 182/204 | | `yaml` | 89.2% | 182/204 | | `xml` | 81.4% | 166/204 | ##### grok-4-fast-non-reasoning | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 59.3% | 121/204 | | `json-compact` | 56.9% | 116/204 | | `json-pretty` | 55.4% | 113/204 | | `yaml` | 54.9% | 112/204 | | `xml` | 52.5% | 107/204 | | `csv` | 48.1% | 50/104 |
How the benchmark works #### What's Being Measured This benchmark tests **LLM comprehension and data retrieval accuracy** across different input formats. Each LLM receives formatted data and must answer questions about it (this does **not** test model's ability to generate TOON output). #### Datasets Tested Six datasets designed to test different structural patterns: 1. **Tabular** (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format. 2. **Nested** (50 e-commerce orders): Complex structures with nested customer objects and item arrays. 3. **Analytics** (60 days of metrics): Time-series data with dates and numeric values. 4. **GitHub** (100 repositories): Real-world data from top GitHub repos by stars. 5. **Event Logs** (75 logs): Semi-uniform data with ~50% flat logs and ~50% with nested error objects. 6. **Nested Config** (1 configuration): Deeply nested configuration with minimal tabular eligibility. #### Question Types 204 questions are generated dynamically across four categories: - **Field retrieval (33%)**: Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths) - Example: "What is Alice's salary?" → `75000` - Example: "How many items are in order ORD-0042?" → `3` - Example: "What is the customer name for order ORD-0042?" → `John Doe` - **Aggregation (31%)**: Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons) - Example: "How many employees work in Engineering?" → `17` - Example: "What is the total revenue across all orders?" → `45123.50` - Example: "How many employees have salary > 80000?" → `23` - **Filtering (24%)**: Multi-condition queries requiring compound logic (AND constraints across fields) - Example: "How many employees in Sales have salary > 80000?" → `5` - Example: "How many active employees have more than 10 years of experience?" → `8` - **Structure awareness (12%)**: Tests format-native structural affordances (TOON's [N] count and {fields}, CSV's header row) - Example: "How many employees are in the dataset?" → `100` - Example: "List the field names for employees" → `id, name, email, department, salary, yearsExperience, active` - Example: "What is the department of the last employee?" → `Sales` #### Evaluation Process 1. **Format conversion**: Each dataset is converted to all 6 formats (TOON, JSON compact, JSON, YAML, XML, CSV). 2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer. 3. **Validate with LLM-as-judge**: `gpt-5-nano` validates if the answer is semantically correct (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`). #### Models & Configuration - **Models tested**: `claude-haiku-4-5-20251001`, `gemini-2.5-flash`, `gpt-5-nano`, `grok-4-fast-non-reasoning` - **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding (GPT-5 tokenizer) - **Temperature**: Not set (models use their defaults) - **Total evaluations**: 204 questions × 6 formats × 4 models = 4,896 LLM calls