7.0 KiB
Retrieval Accuracy
Accuracy across 4 LLMs on 154 data retrieval questions:
gpt-5-nano
toon ███████████████████░ 96.1% (148/154)
csv ██████████████████░░ 90.3% (139/154)
yaml ██████████████████░░ 89.0% (137/154)
json ██████████████████░░ 87.7% (135/154)
xml █████████████████░░░ 83.8% (129/154)
claude-haiku-4-5-20251001
yaml ██████████░░░░░░░░░░ 49.4% (76/154)
toon ██████████░░░░░░░░░░ 48.1% (74/154)
csv ██████████░░░░░░░░░░ 48.1% (74/154)
json █████████░░░░░░░░░░░ 47.4% (73/154)
xml █████████░░░░░░░░░░░ 46.8% (72/154)
gemini-2.5-flash
csv ██████████████████░░ 87.7% (135/154)
xml █████████████████░░░ 85.1% (131/154)
toon █████████████████░░░ 83.8% (129/154)
json ████████████████░░░░ 78.6% (121/154)
yaml ███████████████░░░░░ 76.6% (118/154)
grok-4-fast-non-reasoning
toon ██████████░░░░░░░░░░ 48.7% (75/154)
json ██████████░░░░░░░░░░ 48.1% (74/154)
xml █████████░░░░░░░░░░░ 47.4% (73/154)
yaml █████████░░░░░░░░░░░ 46.8% (72/154)
csv █████████░░░░░░░░░░░ 45.5% (70/154)
Advantage: TOON achieves 69.2% accuracy (vs JSON's 65.4%) while using 46.3% fewer tokens.
Performance by dataset and model
Performance by Dataset
Uniform employee records (TOON optimal format)
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
67.0% | 2,337 | 134/200 |
toon |
66.5% | 2,483 | 133/200 |
yaml |
65.5% | 4,969 | 131/200 |
json |
63.5% | 6,347 | 127/200 |
xml |
66.5% | 7,314 | 133/200 |
E-commerce orders with nested structures
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
78.8% | 5,967 | 126/160 |
csv |
71.9% | 6,735 | 115/160 |
yaml |
71.9% | 7,328 | 115/160 |
json |
73.1% | 9,694 | 117/160 |
xml |
73.8% | 10,992 | 118/160 |
Time-series analytics data
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
67.6% | 1,393 | 92/136 |
toon |
67.6% | 1,515 | 92/136 |
yaml |
64.7% | 2,938 | 88/136 |
json |
68.4% | 3,665 | 93/136 |
xml |
66.2% | 4,376 | 90/136 |
Top 100 GitHub repositories
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
64.2% | 8,513 | 77/120 |
toon |
62.5% | 8,745 | 75/120 |
yaml |
57.5% | 13,129 | 69/120 |
json |
55.0% | 15,145 | 66/120 |
xml |
53.3% | 17,095 | 64/120 |
Performance by Model
gpt-5-nano
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
96.1% | 148/154 |
csv |
90.3% | 139/154 |
yaml |
89.0% | 137/154 |
json |
87.7% | 135/154 |
xml |
83.8% | 129/154 |
claude-haiku-4-5-20251001
| Format | Accuracy | Correct/Total |
|---|---|---|
yaml |
49.4% | 76/154 |
toon |
48.1% | 74/154 |
csv |
48.1% | 74/154 |
json |
47.4% | 73/154 |
xml |
46.8% | 72/154 |
gemini-2.5-flash
| Format | Accuracy | Correct/Total |
|---|---|---|
csv |
87.7% | 135/154 |
xml |
85.1% | 131/154 |
toon |
83.8% | 129/154 |
json |
78.6% | 121/154 |
yaml |
76.6% | 118/154 |
grok-4-fast-non-reasoning
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
48.7% | 75/154 |
json |
48.1% | 74/154 |
xml |
47.4% | 73/154 |
yaml |
46.8% | 72/154 |
csv |
45.5% | 70/154 |
How the benchmark works
What's Being Measured
This benchmark tests LLM comprehension and data retrieval accuracy across different input formats. Each LLM receives formatted data and must answer questions about it (this does not test model's ability to generate TOON output).
Datasets Tested
Four datasets designed to test different structural patterns:
- Tabular (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
- Nested (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
- Analytics (60 days of metrics): Time-series data with dates and numeric values.
- GitHub (100 repositories): Real-world data from top GitHub repos by stars.
Question Types
154 questions are generated dynamically across three categories:
-
Field retrieval (40%): Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)
- Example: "What is Alice's salary?" →
75000 - Example: "How many items are in order ORD-0042?" →
3 - Example: "What is the customer name for order ORD-0042?" →
John Doe
- Example: "What is Alice's salary?" →
-
Aggregation (32%): Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)
- Example: "How many employees work in Engineering?" →
17 - Example: "What is the total revenue across all orders?" →
45123.50 - Example: "How many employees have salary > 80000?" →
23
- Example: "How many employees work in Engineering?" →
-
Filtering (28%): Multi-condition queries requiring compound logic (AND constraints across fields)
- Example: "How many employees in Sales have salary > 80000?" →
5 - Example: "How many active employees have more than 10 years of experience?" →
8
- Example: "How many employees in Sales have salary > 80000?" →
Evaluation Process
- Format conversion: Each dataset is converted to all 5 formats (TOON, CSV, XML, JSON, YAML).
- Query LLM: Each model receives formatted data + question in a prompt and extracts the answer.
- Validate with LLM-as-judge:
gpt-5-nanovalidates if the answer is semantically correct (e.g.,50000=$50,000,Engineering=engineering,2025-01-01=January 1, 2025).
Models & Configuration
- Models tested:
gpt-5-nano,claude-haiku-4-5-20251001,gemini-2.5-flash,grok-4-fast-non-reasoning - Token counting: Using
gpt-tokenizerwitho200k_baseencoding (GPT-5 tokenizer) - Temperature: Not set (models use their defaults)
- Total evaluations: 154 questions × 5 formats × 4 models = 3,080 LLM calls