mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 23:34:10 +08:00
98 lines
3.3 KiB
Markdown
98 lines
3.3 KiB
Markdown
### Retrieval Accuracy
|
|
|
|
Tested across **2 LLMs** with data retrieval tasks:
|
|
|
|
```
|
|
gpt-5-nano
|
|
toon ███████████████████░ 97.5% (155/159)
|
|
markdown-kv ███████████████████░ 95.6% (152/159)
|
|
yaml ███████████████████░ 94.3% (150/159)
|
|
json ███████████████████░ 93.7% (149/159)
|
|
csv ███████████████████░ 93.7% (149/159)
|
|
|
|
claude-haiku-4-5
|
|
markdown-kv ███████████████░░░░░ 76.7% (122/159)
|
|
toon ███████████████░░░░░ 75.5% (120/159)
|
|
json ███████████████░░░░░ 75.5% (120/159)
|
|
csv ███████████████░░░░░ 75.5% (120/159)
|
|
yaml ███████████████░░░░░ 74.8% (119/159)
|
|
```
|
|
|
|
**Advantage:** TOON achieves **86.5% accuracy** (vs JSON's 84.6%) while using **46.3% fewer tokens**.
|
|
|
|
<details>
|
|
<summary><strong>View detailed breakdown by dataset and model</strong></summary>
|
|
|
|
#### Performance by Dataset
|
|
|
|
##### Uniform employee records (TOON optimal format)
|
|
|
|
| Format | Accuracy | Tokens | Correct/Total |
|
|
| ------ | -------- | ------ | ------------- |
|
|
| `toon` | 86.2% | 2.483 | 100/116 |
|
|
| `csv` | 80.2% | 2.337 | 93/116 |
|
|
| `yaml` | 82.8% | 4.969 | 96/116 |
|
|
| `markdown-kv` | 84.5% | 6.270 | 98/116 |
|
|
| `json` | 84.5% | 6.347 | 98/116 |
|
|
|
|
##### E-commerce orders with nested structures
|
|
|
|
| Format | Accuracy | Tokens | Correct/Total |
|
|
| ------ | -------- | ------ | ------------- |
|
|
| `toon` | 90.9% | 5.967 | 80/88 |
|
|
| `csv` | 90.9% | 6.735 | 80/88 |
|
|
| `yaml` | 89.8% | 7.328 | 79/88 |
|
|
| `markdown-kv` | 90.9% | 9.110 | 80/88 |
|
|
| `json` | 89.8% | 9.694 | 79/88 |
|
|
|
|
##### Time-series analytics data
|
|
|
|
| Format | Accuracy | Tokens | Correct/Total |
|
|
| ------ | -------- | ------ | ------------- |
|
|
| `csv` | 87.9% | 1.393 | 51/58 |
|
|
| `toon` | 86.2% | 1.515 | 50/58 |
|
|
| `yaml` | 86.2% | 2.938 | 50/58 |
|
|
| `json` | 87.9% | 3.665 | 51/58 |
|
|
| `markdown-kv` | 86.2% | 3.779 | 50/58 |
|
|
|
|
##### Top 100 GitHub repositories
|
|
|
|
| Format | Accuracy | Tokens | Correct/Total |
|
|
| ------ | -------- | ------ | ------------- |
|
|
| `csv` | 80.4% | 8.513 | 45/56 |
|
|
| `toon` | 80.4% | 8.745 | 45/56 |
|
|
| `yaml` | 78.6% | 13.129 | 44/56 |
|
|
| `markdown-kv` | 82.1% | 15.436 | 46/56 |
|
|
| `json` | 73.2% | 15.145 | 41/56 |
|
|
|
|
#### Performance by Model
|
|
|
|
##### gpt-5-nano
|
|
|
|
| Format | Accuracy | Correct/Total |
|
|
| ------ | -------- | ------------- |
|
|
| `toon` | 97.5% | 155/159 |
|
|
| `markdown-kv` | 95.6% | 152/159 |
|
|
| `yaml` | 94.3% | 150/159 |
|
|
| `json` | 93.7% | 149/159 |
|
|
| `csv` | 93.7% | 149/159 |
|
|
|
|
##### claude-haiku-4-5
|
|
|
|
| Format | Accuracy | Correct/Total |
|
|
| ------ | -------- | ------------- |
|
|
| `markdown-kv` | 76.7% | 122/159 |
|
|
| `toon` | 75.5% | 120/159 |
|
|
| `json` | 75.5% | 120/159 |
|
|
| `csv` | 75.5% | 120/159 |
|
|
| `yaml` | 74.8% | 119/159 |
|
|
|
|
#### Methodology
|
|
|
|
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).
|
|
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding.
|
|
- **Question types**: Field retrieval, aggregation, and filtering tasks.
|
|
- **Real data**: Faker.js-generated datasets + GitHub repositories.
|
|
|
|
</details>
|