mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 23:34:10 +08:00
575 lines
24 KiB
Markdown
575 lines
24 KiB
Markdown
# Benchmarks
|
||
|
||
The benchmarks on this page measure TOON's performance across two key dimensions:
|
||
|
||
- **Retrieval Accuracy**: How well LLMs understand and extract information from different input formats.
|
||
- **Token Efficiency**: How many tokens each format requires to represent the same data.
|
||
|
||
Benchmarks are organized into two tracks to ensure fair comparisons:
|
||
|
||
- **Mixed-Structure Track**: Datasets with nested or semi-uniform structures (TOON vs JSON, YAML, XML). CSV excluded as it cannot properly represent these structures.
|
||
- **Flat-Only Track**: Datasets with flat tabular structures where CSV is applicable (CSV vs TOON vs JSON, YAML, XML).
|
||
|
||
## Retrieval Accuracy
|
||
|
||
<!-- automd:file src="../../benchmarks/results/retrieval-accuracy.md" -->
|
||
|
||
Benchmarks test LLM comprehension across different input formats using 209 data retrieval questions on 4 models.
|
||
|
||
<details>
|
||
<summary><strong>Show Dataset Catalog</strong></summary>
|
||
|
||
#### Dataset Catalog
|
||
|
||
| Dataset | Rows | Structure | CSV Support | Eligibility |
|
||
| ------- | ---- | --------- | ----------- | ----------- |
|
||
| Uniform employee records | 100 | uniform | ✓ | 100% |
|
||
| E-commerce orders with nested structures | 50 | nested | ✗ | 33% |
|
||
| Time-series analytics data | 60 | uniform | ✓ | 100% |
|
||
| Top 100 GitHub repositories | 100 | uniform | ✓ | 100% |
|
||
| Semi-uniform event logs | 75 | semi-uniform | ✗ | 50% |
|
||
| Deeply nested configuration | 11 | deep | ✗ | 0% |
|
||
| Valid complete dataset (control) | 20 | uniform | ✓ | 100% |
|
||
| Array truncated: 3 rows removed from end | 17 | uniform | ✓ | 100% |
|
||
| Extra rows added beyond declared length | 23 | uniform | ✓ | 100% |
|
||
| Inconsistent field count (missing salary in row 10) | 20 | uniform | ✓ | 100% |
|
||
| Missing required fields (no email in multiple rows) | 20 | uniform | ✓ | 100% |
|
||
|
||
**Structure classes:**
|
||
- **uniform**: All objects have identical fields with primitive values
|
||
- **semi-uniform**: Mix of uniform and non-uniform structures
|
||
- **nested**: Objects with nested structures (nested objects or arrays)
|
||
- **deep**: Highly nested with minimal tabular eligibility
|
||
|
||
**CSV Support:** ✓ (supported), ✗ (not supported – would require lossy flattening)
|
||
|
||
**Eligibility:** Percentage of arrays that qualify for TOON's tabular format (uniform objects with primitive values)
|
||
|
||
</details>
|
||
|
||
#### Efficiency Ranking (Accuracy per 1K Tokens)
|
||
|
||
Each format's overall performance, balancing accuracy against token cost:
|
||
|
||
```
|
||
TOON ████████████████████ 26.9 │ 73.9% acc │ 2,744 tokens
|
||
JSON compact █████████████████░░░ 22.9 │ 70.7% acc │ 3,081 tokens
|
||
YAML ██████████████░░░░░░ 18.6 │ 69.0% acc │ 3,719 tokens
|
||
JSON ███████████░░░░░░░░░ 15.3 │ 69.7% acc │ 4,545 tokens
|
||
XML ██████████░░░░░░░░░░ 13.0 │ 67.1% acc │ 5,167 tokens
|
||
```
|
||
|
||
TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.6% fewer tokens**.
|
||
|
||
**Note on CSV:** Excluded from ranking as it only supports 109 of 209 questions (flat tabular data only). While CSV is highly token-efficient for simple tabular data, it cannot represent nested structures that other formats handle.
|
||
|
||
#### Per-Model Accuracy
|
||
|
||
Accuracy across 4 LLMs on 209 data retrieval questions:
|
||
|
||
```
|
||
claude-haiku-4-5-20251001
|
||
→ TOON ████████████░░░░░░░░ 59.8% (125/209)
|
||
JSON ███████████░░░░░░░░░ 57.4% (120/209)
|
||
YAML ███████████░░░░░░░░░ 56.0% (117/209)
|
||
XML ███████████░░░░░░░░░ 55.5% (116/209)
|
||
JSON compact ███████████░░░░░░░░░ 55.0% (115/209)
|
||
CSV ██████████░░░░░░░░░░ 50.5% (55/109)
|
||
|
||
gemini-2.5-flash
|
||
→ TOON ██████████████████░░ 87.6% (183/209)
|
||
CSV █████████████████░░░ 86.2% (94/109)
|
||
JSON compact ████████████████░░░░ 82.3% (172/209)
|
||
YAML ████████████████░░░░ 79.4% (166/209)
|
||
XML ████████████████░░░░ 79.4% (166/209)
|
||
JSON ███████████████░░░░░ 77.0% (161/209)
|
||
|
||
gpt-5-nano
|
||
→ TOON ██████████████████░░ 90.9% (190/209)
|
||
JSON compact ██████████████████░░ 90.9% (190/209)
|
||
JSON ██████████████████░░ 89.0% (186/209)
|
||
CSV ██████████████████░░ 89.0% (97/109)
|
||
YAML █████████████████░░░ 87.1% (182/209)
|
||
XML ████████████████░░░░ 80.9% (169/209)
|
||
|
||
grok-4-fast-non-reasoning
|
||
→ TOON ███████████░░░░░░░░░ 57.4% (120/209)
|
||
JSON ███████████░░░░░░░░░ 55.5% (116/209)
|
||
JSON compact ███████████░░░░░░░░░ 54.5% (114/209)
|
||
YAML ███████████░░░░░░░░░ 53.6% (112/209)
|
||
XML ███████████░░░░░░░░░ 52.6% (110/209)
|
||
CSV ██████████░░░░░░░░░░ 52.3% (57/109)
|
||
```
|
||
|
||
> [!TIP] Results Summary
|
||
> TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.6% fewer tokens** on these datasets.
|
||
|
||
<details>
|
||
<summary><strong>Performance by dataset, model, and question type</strong></summary>
|
||
|
||
#### Performance by Question Type
|
||
|
||
| Question Type | TOON | JSON compact | JSON | CSV | YAML | XML |
|
||
| ------------- | ---- | ---- | ---- | ---- | ---- | ---- |
|
||
| Field Retrieval | 99.6% | 99.3% | 99.3% | 100.0% | 98.2% | 98.9% |
|
||
| Aggregation | 54.4% | 47.2% | 48.8% | 44.0% | 47.6% | 41.3% |
|
||
| Filtering | 56.3% | 57.3% | 50.5% | 49.1% | 51.0% | 47.9% |
|
||
| Structure Awareness | 88.0% | 83.0% | 83.0% | 85.9% | 80.0% | 80.0% |
|
||
| Structural Validation | 70.0% | 45.0% | 50.0% | 80.0% | 60.0% | 80.0% |
|
||
|
||
#### Performance by Dataset
|
||
|
||
##### Uniform employee records
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 72.0% | 2,352 | 118/164 |
|
||
| `toon` | 73.8% | 2,518 | 121/164 |
|
||
| `json-compact` | 69.5% | 3,953 | 114/164 |
|
||
| `yaml` | 68.3% | 4,982 | 112/164 |
|
||
| `json-pretty` | 68.3% | 6,360 | 112/164 |
|
||
| `xml` | 69.5% | 7,324 | 114/164 |
|
||
|
||
##### E-commerce orders with nested structures
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `toon` | 81.1% | 7,232 | 133/164 |
|
||
| `json-compact` | 76.8% | 6,794 | 126/164 |
|
||
| `yaml` | 75.6% | 8,347 | 124/164 |
|
||
| `json-pretty` | 76.2% | 10,713 | 125/164 |
|
||
| `xml` | 74.4% | 12,023 | 122/164 |
|
||
|
||
##### Time-series analytics data
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 73.3% | 1,406 | 88/120 |
|
||
| `toon` | 72.5% | 1,548 | 87/120 |
|
||
| `json-compact` | 71.7% | 2,349 | 86/120 |
|
||
| `yaml` | 71.7% | 2,949 | 86/120 |
|
||
| `json-pretty` | 68.3% | 3,676 | 82/120 |
|
||
| `xml` | 68.3% | 4,384 | 82/120 |
|
||
|
||
##### Top 100 GitHub repositories
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `toon` | 62.9% | 8,779 | 83/132 |
|
||
| `csv` | 61.4% | 8,527 | 81/132 |
|
||
| `yaml` | 59.8% | 13,141 | 79/132 |
|
||
| `json-compact` | 55.3% | 11,464 | 73/132 |
|
||
| `json-pretty` | 56.1% | 15,157 | 74/132 |
|
||
| `xml` | 48.5% | 17,105 | 64/132 |
|
||
|
||
##### Semi-uniform event logs
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `json-compact` | 63.3% | 4,819 | 76/120 |
|
||
| `toon` | 57.5% | 5,799 | 69/120 |
|
||
| `json-pretty` | 59.2% | 6,797 | 71/120 |
|
||
| `yaml` | 48.3% | 5,827 | 58/120 |
|
||
| `xml` | 46.7% | 7,709 | 56/120 |
|
||
|
||
##### Deeply nested configuration
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `json-compact` | 92.2% | 574 | 107/116 |
|
||
| `toon` | 95.7% | 666 | 111/116 |
|
||
| `yaml` | 91.4% | 686 | 106/116 |
|
||
| `json-pretty` | 94.0% | 932 | 109/116 |
|
||
| `xml` | 92.2% | 1,018 | 107/116 |
|
||
|
||
##### Valid complete dataset (control)
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `toon` | 100.0% | 544 | 4/4 |
|
||
| `json-compact` | 100.0% | 795 | 4/4 |
|
||
| `yaml` | 100.0% | 1,003 | 4/4 |
|
||
| `json-pretty` | 100.0% | 1,282 | 4/4 |
|
||
| `csv` | 25.0% | 492 | 1/4 |
|
||
| `xml` | 0.0% | 1,467 | 0/4 |
|
||
|
||
##### Array truncated: 3 rows removed from end
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 100.0% | 425 | 4/4 |
|
||
| `xml` | 100.0% | 1,251 | 4/4 |
|
||
| `toon` | 0.0% | 474 | 0/4 |
|
||
| `json-compact` | 0.0% | 681 | 0/4 |
|
||
| `json-pretty` | 0.0% | 1,096 | 0/4 |
|
||
| `yaml` | 0.0% | 859 | 0/4 |
|
||
|
||
##### Extra rows added beyond declared length
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 100.0% | 566 | 4/4 |
|
||
| `toon` | 75.0% | 621 | 3/4 |
|
||
| `xml` | 100.0% | 1,692 | 4/4 |
|
||
| `yaml` | 75.0% | 1,157 | 3/4 |
|
||
| `json-compact` | 50.0% | 917 | 2/4 |
|
||
| `json-pretty` | 50.0% | 1,476 | 2/4 |
|
||
|
||
##### Inconsistent field count (missing salary in row 10)
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 75.0% | 489 | 3/4 |
|
||
| `yaml` | 100.0% | 996 | 4/4 |
|
||
| `toon` | 100.0% | 1,019 | 4/4 |
|
||
| `json-compact` | 75.0% | 790 | 3/4 |
|
||
| `xml` | 100.0% | 1,458 | 4/4 |
|
||
| `json-pretty` | 75.0% | 1,274 | 3/4 |
|
||
|
||
##### Missing required fields (no email in multiple rows)
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 100.0% | 329 | 4/4 |
|
||
| `xml` | 100.0% | 1,411 | 4/4 |
|
||
| `toon` | 75.0% | 983 | 3/4 |
|
||
| `yaml` | 25.0% | 960 | 1/4 |
|
||
| `json-pretty` | 25.0% | 1,230 | 1/4 |
|
||
| `json-compact` | 0.0% | 755 | 0/4 |
|
||
|
||
#### Performance by Model
|
||
|
||
##### claude-haiku-4-5-20251001
|
||
|
||
| Format | Accuracy | Correct/Total |
|
||
| ------ | -------- | ------------- |
|
||
| `toon` | 59.8% | 125/209 |
|
||
| `json-pretty` | 57.4% | 120/209 |
|
||
| `yaml` | 56.0% | 117/209 |
|
||
| `xml` | 55.5% | 116/209 |
|
||
| `json-compact` | 55.0% | 115/209 |
|
||
| `csv` | 50.5% | 55/109 |
|
||
|
||
##### gemini-2.5-flash
|
||
|
||
| Format | Accuracy | Correct/Total |
|
||
| ------ | -------- | ------------- |
|
||
| `toon` | 87.6% | 183/209 |
|
||
| `csv` | 86.2% | 94/109 |
|
||
| `json-compact` | 82.3% | 172/209 |
|
||
| `yaml` | 79.4% | 166/209 |
|
||
| `xml` | 79.4% | 166/209 |
|
||
| `json-pretty` | 77.0% | 161/209 |
|
||
|
||
##### gpt-5-nano
|
||
|
||
| Format | Accuracy | Correct/Total |
|
||
| ------ | -------- | ------------- |
|
||
| `toon` | 90.9% | 190/209 |
|
||
| `json-compact` | 90.9% | 190/209 |
|
||
| `json-pretty` | 89.0% | 186/209 |
|
||
| `csv` | 89.0% | 97/109 |
|
||
| `yaml` | 87.1% | 182/209 |
|
||
| `xml` | 80.9% | 169/209 |
|
||
|
||
##### grok-4-fast-non-reasoning
|
||
|
||
| Format | Accuracy | Correct/Total |
|
||
| ------ | -------- | ------------- |
|
||
| `toon` | 57.4% | 120/209 |
|
||
| `json-pretty` | 55.5% | 116/209 |
|
||
| `json-compact` | 54.5% | 114/209 |
|
||
| `yaml` | 53.6% | 112/209 |
|
||
| `xml` | 52.6% | 110/209 |
|
||
| `csv` | 52.3% | 57/109 |
|
||
|
||
</details>
|
||
|
||
#### What's Being Measured
|
||
|
||
This benchmark tests **LLM comprehension and data retrieval accuracy** across different input formats. Each LLM receives formatted data and must answer questions about it. This does **not** test the model's ability to generate TOON output – only to read and understand it.
|
||
|
||
#### Datasets Tested
|
||
|
||
Eleven datasets designed to test different structural patterns and validation capabilities:
|
||
|
||
**Primary datasets:**
|
||
|
||
1. **Tabular** (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
|
||
2. **Nested** (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
|
||
3. **Analytics** (60 days of metrics): Time-series data with dates and numeric values.
|
||
4. **GitHub** (100 repositories): Real-world data from top GitHub repos by stars.
|
||
5. **Event Logs** (75 logs): Semi-uniform data with ~50% flat logs and ~50% with nested error objects.
|
||
6. **Nested Config** (1 configuration): Deeply nested configuration with minimal tabular eligibility.
|
||
|
||
**Structural validation datasets:**
|
||
|
||
7. **Control**: Valid complete dataset (baseline for validation)
|
||
8. **Truncated**: Array with 3 rows removed from end (tests `[N]` length detection)
|
||
9. **Extra rows**: Array with 3 additional rows beyond declared length
|
||
10. **Width mismatch**: Inconsistent field count (missing salary in row 10)
|
||
11. **Missing fields**: Systematic field omissions (no email in multiple rows)
|
||
|
||
#### Question Types
|
||
|
||
209 questions are generated dynamically across five categories:
|
||
|
||
- **Field retrieval (33%)**: Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)
|
||
- Example: "What is Alice's salary?" → `75000`
|
||
- Example: "How many items are in order ORD-0042?" → `3`
|
||
- Example: "What is the customer name for order ORD-0042?" → `John Doe`
|
||
|
||
- **Aggregation (30%)**: Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)
|
||
- Example: "How many employees work in Engineering?" → `17`
|
||
- Example: "What is the total revenue across all orders?" → `45123.50`
|
||
- Example: "How many employees have salary > 80000?" → `23`
|
||
|
||
- **Filtering (23%)**: Multi-condition queries requiring compound logic (AND constraints across fields)
|
||
- Example: "How many employees in Sales have salary > 80000?" → `5`
|
||
- Example: "How many active employees have more than 10 years of experience?" → `8`
|
||
|
||
- **Structure awareness (12%)**: Tests format-native structural affordances (TOON's `[N]` count and `{fields}`, CSV's header row)
|
||
- Example: "How many employees are in the dataset?" → `100`
|
||
- Example: "List the field names for employees" → `id, name, email, department, salary, yearsExperience, active`
|
||
- Example: "What is the department of the last employee?" → `Sales`
|
||
|
||
- **Structural validation (2%)**: Tests ability to detect incomplete, truncated, or corrupted data using structural metadata
|
||
- Example: "Is this data complete and valid?" → `YES` (control dataset) or `NO` (corrupted datasets)
|
||
- Tests TOON's `[N]` length validation and `{fields}` consistency checking
|
||
- Demonstrates CSV's lack of structural validation capabilities
|
||
|
||
#### Evaluation Process
|
||
|
||
1. **Format conversion**: Each dataset is converted to all 6 formats (TOON, JSON compact, JSON, CSV, YAML, XML).
|
||
2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer.
|
||
3. **Validate deterministically**: Answers are validated using type-aware comparison (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`) without requiring an LLM judge.
|
||
|
||
#### Models & Configuration
|
||
|
||
- **Models tested**: `claude-haiku-4-5-20251001`, `gemini-2.5-flash`, `gpt-5-nano`, `grok-4-fast-non-reasoning`
|
||
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding (GPT-5 tokenizer)
|
||
- **Temperature**: Not set (models use their defaults)
|
||
- **Total evaluations**: 209 questions × 6 formats × 4 models = 5,016 LLM calls
|
||
|
||
<!-- /automd -->
|
||
|
||
## Token Efficiency
|
||
|
||
Token counts are measured using the GPT-5 `o200k_base` tokenizer via [`gpt-tokenizer`](https://github.com/niieani/gpt-tokenizer). Savings are calculated against formatted JSON (2-space indentation) as the primary baseline, with additional comparisons to compact JSON (minified), YAML, and XML. Actual savings vary by model and tokenizer.
|
||
|
||
The benchmarks test datasets across different structural patterns (uniform, semi-uniform, nested, deeply nested) to show where TOON excels and where other formats may be better.
|
||
|
||
<!-- automd:file src="../../benchmarks/results/token-efficiency.md" -->
|
||
|
||
#### Mixed-Structure Track
|
||
|
||
Datasets with nested or semi-uniform structures. CSV excluded as it cannot properly represent these structures.
|
||
|
||
```
|
||
🛒 E-commerce orders with nested structures ┊ Tabular: 33%
|
||
│
|
||
TOON █████████████░░░░░░░ 72,771 tokens
|
||
├─ vs JSON (−33.1%) 108,806 tokens
|
||
├─ vs JSON compact (+5.5%) 68,975 tokens
|
||
├─ vs YAML (−14.2%) 84,780 tokens
|
||
└─ vs XML (−40.5%) 122,406 tokens
|
||
|
||
🧾 Semi-uniform event logs ┊ Tabular: 50%
|
||
│
|
||
TOON █████████████████░░░ 153,211 tokens
|
||
├─ vs JSON (−15.0%) 180,176 tokens
|
||
├─ vs JSON compact (+19.9%) 127,731 tokens
|
||
├─ vs YAML (−0.8%) 154,505 tokens
|
||
└─ vs XML (−25.2%) 204,777 tokens
|
||
|
||
🧩 Deeply nested configuration ┊ Tabular: 0%
|
||
│
|
||
TOON ██████████████░░░░░░ 631 tokens
|
||
├─ vs JSON (−31.3%) 919 tokens
|
||
├─ vs JSON compact (+11.9%) 564 tokens
|
||
├─ vs YAML (−6.2%) 673 tokens
|
||
└─ vs XML (−37.4%) 1,008 tokens
|
||
|
||
──────────────────────────────────── Total ────────────────────────────────────
|
||
TOON ████████████████░░░░ 226,613 tokens
|
||
├─ vs JSON (−21.8%) 289,901 tokens
|
||
├─ vs JSON compact (+14.9%) 197,270 tokens
|
||
├─ vs YAML (−5.6%) 239,958 tokens
|
||
└─ vs XML (−31.0%) 328,191 tokens
|
||
```
|
||
|
||
#### Flat-Only Track
|
||
|
||
Datasets with flat tabular structures where CSV is applicable.
|
||
|
||
```
|
||
👥 Uniform employee records ┊ Tabular: 100%
|
||
│
|
||
CSV ███████████████████░ 46,954 tokens
|
||
TOON ████████████████████ 49,831 tokens (+6.1% vs CSV)
|
||
├─ vs JSON (−60.7%) 126,860 tokens
|
||
├─ vs JSON compact (−36.8%) 78,856 tokens
|
||
├─ vs YAML (−50.0%) 99,706 tokens
|
||
└─ vs XML (−66.0%) 146,444 tokens
|
||
|
||
📈 Time-series analytics data ┊ Tabular: 100%
|
||
│
|
||
CSV ██████████████████░░ 8,388 tokens
|
||
TOON ████████████████████ 9,120 tokens (+8.7% vs CSV)
|
||
├─ vs JSON (−59.0%) 22,250 tokens
|
||
├─ vs JSON compact (−35.8%) 14,216 tokens
|
||
├─ vs YAML (−48.9%) 17,863 tokens
|
||
└─ vs XML (−65.7%) 26,621 tokens
|
||
|
||
⭐ Top 100 GitHub repositories ┊ Tabular: 100%
|
||
│
|
||
CSV ███████████████████░ 8,513 tokens
|
||
TOON ████████████████████ 8,745 tokens (+2.7% vs CSV)
|
||
├─ vs JSON (−42.3%) 15,145 tokens
|
||
├─ vs JSON compact (−23.7%) 11,455 tokens
|
||
├─ vs YAML (−33.4%) 13,129 tokens
|
||
└─ vs XML (−48.8%) 17,095 tokens
|
||
|
||
──────────────────────────────────── Total ────────────────────────────────────
|
||
CSV ███████████████████░ 63,855 tokens
|
||
TOON ████████████████████ 67,696 tokens (+6.0% vs CSV)
|
||
├─ vs JSON (−58.8%) 164,255 tokens
|
||
├─ vs JSON compact (−35.2%) 104,527 tokens
|
||
├─ vs YAML (−48.2%) 130,698 tokens
|
||
└─ vs XML (−64.4%) 190,160 tokens
|
||
```
|
||
|
||
<details>
|
||
<summary><strong>Show detailed examples</strong></summary>
|
||
|
||
#### 📈 Time-series analytics data
|
||
|
||
**Savings:** 13,130 tokens (59.0% reduction vs JSON)
|
||
|
||
**JSON** (22,250 tokens):
|
||
|
||
```json
|
||
{
|
||
"metrics": [
|
||
{
|
||
"date": "2025-01-01",
|
||
"views": 5715,
|
||
"clicks": 211,
|
||
"conversions": 28,
|
||
"revenue": 7976.46,
|
||
"bounceRate": 0.47
|
||
},
|
||
{
|
||
"date": "2025-01-02",
|
||
"views": 7103,
|
||
"clicks": 393,
|
||
"conversions": 28,
|
||
"revenue": 8360.53,
|
||
"bounceRate": 0.32
|
||
},
|
||
{
|
||
"date": "2025-01-03",
|
||
"views": 7248,
|
||
"clicks": 378,
|
||
"conversions": 24,
|
||
"revenue": 3212.57,
|
||
"bounceRate": 0.5
|
||
},
|
||
{
|
||
"date": "2025-01-04",
|
||
"views": 2927,
|
||
"clicks": 77,
|
||
"conversions": 11,
|
||
"revenue": 1211.69,
|
||
"bounceRate": 0.62
|
||
},
|
||
{
|
||
"date": "2025-01-05",
|
||
"views": 3530,
|
||
"clicks": 82,
|
||
"conversions": 8,
|
||
"revenue": 462.77,
|
||
"bounceRate": 0.56
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
**TOON** (9,120 tokens):
|
||
|
||
```
|
||
metrics[5]{date,views,clicks,conversions,revenue,bounceRate}:
|
||
2025-01-01,5715,211,28,7976.46,0.47
|
||
2025-01-02,7103,393,28,8360.53,0.32
|
||
2025-01-03,7248,378,24,3212.57,0.5
|
||
2025-01-04,2927,77,11,1211.69,0.62
|
||
2025-01-05,3530,82,8,462.77,0.56
|
||
```
|
||
|
||
---
|
||
|
||
#### ⭐ Top 100 GitHub repositories
|
||
|
||
**Savings:** 6,400 tokens (42.3% reduction vs JSON)
|
||
|
||
**JSON** (15,145 tokens):
|
||
|
||
```json
|
||
{
|
||
"repositories": [
|
||
{
|
||
"id": 28457823,
|
||
"name": "freeCodeCamp",
|
||
"repo": "freeCodeCamp/freeCodeCamp",
|
||
"description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…",
|
||
"createdAt": "2014-12-24T17:49:19Z",
|
||
"updatedAt": "2025-10-28T11:58:08Z",
|
||
"pushedAt": "2025-10-28T10:17:16Z",
|
||
"stars": 430886,
|
||
"watchers": 8583,
|
||
"forks": 42146,
|
||
"defaultBranch": "main"
|
||
},
|
||
{
|
||
"id": 132750724,
|
||
"name": "build-your-own-x",
|
||
"repo": "codecrafters-io/build-your-own-x",
|
||
"description": "Master programming by recreating your favorite technologies from scratch.",
|
||
"createdAt": "2018-05-09T12:03:18Z",
|
||
"updatedAt": "2025-10-28T12:37:11Z",
|
||
"pushedAt": "2025-10-10T18:45:01Z",
|
||
"stars": 430877,
|
||
"watchers": 6332,
|
||
"forks": 40453,
|
||
"defaultBranch": "master"
|
||
},
|
||
{
|
||
"id": 21737465,
|
||
"name": "awesome",
|
||
"repo": "sindresorhus/awesome",
|
||
"description": "😎 Awesome lists about all kinds of interesting topics",
|
||
"createdAt": "2014-07-11T13:42:37Z",
|
||
"updatedAt": "2025-10-28T12:40:21Z",
|
||
"pushedAt": "2025-10-27T17:57:31Z",
|
||
"stars": 410052,
|
||
"watchers": 8017,
|
||
"forks": 32029,
|
||
"defaultBranch": "main"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
**TOON** (8,745 tokens):
|
||
|
||
```
|
||
repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}:
|
||
28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…","2014-12-24T17:49:19Z","2025-10-28T11:58:08Z","2025-10-28T10:17:16Z",430886,8583,42146,main
|
||
132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-28T12:37:11Z","2025-10-10T18:45:01Z",430877,6332,40453,master
|
||
21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-28T12:40:21Z","2025-10-27T17:57:31Z",410052,8017,32029,main
|
||
```
|
||
|
||
</details>
|
||
|
||
<!-- /automd -->
|