mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 23:34:10 +08:00
* added Laravel toon package in readme.md * docs: add Laravel Framework implementation to community section --------- Co-authored-by: Johann Schopplich <mail@johannschopplich.com>
871 lines
36 KiB
Markdown
871 lines
36 KiB
Markdown

|
||
|
||
# Token-Oriented Object Notation (TOON)
|
||
|
||
[](https://github.com/toon-format/toon/actions)
|
||
[](https://www.npmjs.com/package/@toon-format/toon)
|
||
[](https://github.com/toon-format/spec)
|
||
[](https://www.npmjs.com/package/@toon-format/toon)
|
||
[](./LICENSE)
|
||
|
||
**Token-Oriented Object Notation** is a compact, human-readable encoding of the JSON data model for LLM prompts. It provides a lossless serialization of the same objects, arrays, and primitives as JSON, but in a syntax that minimizes tokens and makes structure easy for models to follow.
|
||
|
||
TOON combines YAML's indentation-based structure for nested objects with a CSV-style tabular layout for uniform arrays. TOON's sweet spot is uniform arrays of objects (multiple fields per row, same structure across items), achieving CSV-like compactness while adding explicit structure that helps LLMs parse and validate data reliably. For deeply nested or non-uniform data, JSON may be more efficient.
|
||
|
||
The similarity to CSV is intentional: CSV is simple and ubiquitous, and TOON aims to keep that familiarity while remaining a lossless, drop-in representation of JSON for Large Language Models.
|
||
|
||
Think of it as a translation layer: use JSON programmatically, and encode it as TOON for LLM input.
|
||
|
||
> [!TIP]
|
||
> The TOON format is stable, but also an idea in progress. Nothing's set in stone – help shape where it goes by contributing to the [spec](https://github.com/toon-format/spec) or sharing feedback.
|
||
|
||
## Table of Contents
|
||
|
||
- [Why TOON?](#why-toon)
|
||
- [Key Features](#key-features)
|
||
- [When Not to Use TOON](#when-not-to-use-toon)
|
||
- [Benchmarks](#benchmarks)
|
||
- [Installation & Quick Start](#installation--quick-start)
|
||
- [Playgrounds](#playgrounds)
|
||
- [CLI](#cli)
|
||
- [Format Overview](#format-overview)
|
||
- [Using TOON with LLMs](#using-toon-with-llms)
|
||
- [Documentation](#documentation)
|
||
- [Other Implementations](#other-implementations)
|
||
- [📋 Full Specification](https://github.com/toon-format/spec/blob/main/SPEC.md)
|
||
|
||
## Why TOON?
|
||
|
||
AI is becoming cheaper and more accessible, but larger context windows allow for larger data inputs as well. **LLM tokens still cost money** – and standard JSON is verbose and token-expensive:
|
||
|
||
```json
|
||
{
|
||
"context": {
|
||
"task": "Our favorite hikes together",
|
||
"location": "Boulder",
|
||
"season": "spring_2025"
|
||
},
|
||
"friends": ["ana", "luis", "sam"],
|
||
"hikes": [
|
||
{
|
||
"id": 1,
|
||
"name": "Blue Lake Trail",
|
||
"distanceKm": 7.5,
|
||
"elevationGain": 320,
|
||
"companion": "ana",
|
||
"wasSunny": true
|
||
},
|
||
{
|
||
"id": 2,
|
||
"name": "Ridge Overlook",
|
||
"distanceKm": 9.2,
|
||
"elevationGain": 540,
|
||
"companion": "luis",
|
||
"wasSunny": false
|
||
},
|
||
{
|
||
"id": 3,
|
||
"name": "Wildflower Loop",
|
||
"distanceKm": 5.1,
|
||
"elevationGain": 180,
|
||
"companion": "sam",
|
||
"wasSunny": true
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
<details>
|
||
<summary>YAML already conveys the same information with <strong>fewer tokens</strong>.</summary>
|
||
|
||
```yaml
|
||
context:
|
||
task: Our favorite hikes together
|
||
location: Boulder
|
||
season: spring_2025
|
||
|
||
friends:
|
||
- ana
|
||
- luis
|
||
- sam
|
||
|
||
hikes:
|
||
- id: 1
|
||
name: Blue Lake Trail
|
||
distanceKm: 7.5
|
||
elevationGain: 320
|
||
companion: ana
|
||
wasSunny: true
|
||
- id: 2
|
||
name: Ridge Overlook
|
||
distanceKm: 9.2
|
||
elevationGain: 540
|
||
companion: luis
|
||
wasSunny: false
|
||
- id: 3
|
||
name: Wildflower Loop
|
||
distanceKm: 5.1
|
||
elevationGain: 180
|
||
companion: sam
|
||
wasSunny: true
|
||
```
|
||
|
||
</details>
|
||
|
||
TOON conveys the same information with **even fewer tokens** – combining YAML-like indentation with CSV-style tabular arrays:
|
||
|
||
```yaml
|
||
context:
|
||
task: Our favorite hikes together
|
||
location: Boulder
|
||
season: spring_2025
|
||
friends[3]: ana,luis,sam
|
||
hikes[3]{id,name,distanceKm,elevationGain,companion,wasSunny}:
|
||
1,Blue Lake Trail,7.5,320,ana,true
|
||
2,Ridge Overlook,9.2,540,luis,false
|
||
3,Wildflower Loop,5.1,180,sam,true
|
||
```
|
||
|
||
## Key Features
|
||
|
||
- 📊 **Token-Efficient & Accurate:** TOON reaches 74% accuracy (vs JSON's 70%) while using ~40% fewer tokens in mixed-structure benchmarks across 4 models.
|
||
- 🔁 **JSON Data Model:** Encodes the same objects, arrays, and primitives as JSON with deterministic, lossless round-trips.
|
||
- 🛤️ **LLM-Friendly Guardrails:** Explicit [N] lengths and {fields} headers give models a clear schema to follow, improving parsing reliability.
|
||
- 📐 **Minimal Syntax:** Uses indentation instead of braces and minimizes quoting, giving YAML-like readability with CSV-style compactness.
|
||
- 🧺 **Tabular Arrays:** Uniform arrays of objects collapse into tables that declare fields once and stream row values line by line.
|
||
- 🌐 **Multi-Language Ecosystem:** Spec-driven implementations in TypeScript, Python, Go, Rust, .NET, and other languages.
|
||
|
||
## When Not to Use TOON
|
||
|
||
TOON excels with uniform arrays of objects, but there are cases where other formats are better:
|
||
|
||
- **Deeply nested or non-uniform structures** (tabular eligibility ≈ 0%): JSON-compact often uses fewer tokens. Example: complex configuration objects with many nested levels.
|
||
- **Semi-uniform arrays** (~40–60% tabular eligibility): Token savings diminish. Prefer JSON if your pipelines already rely on it.
|
||
- **Pure tabular data**: CSV is smaller than TOON for flat tables. TOON adds minimal overhead (~5-10%) to provide structure (array length declarations, field headers, delimiter scoping) that improves LLM reliability.
|
||
- **Latency-critical applications**: If end-to-end response time is your top priority, benchmark on your exact setup. Some deployments (especially local/quantized models like Ollama) may process compact JSON faster despite TOON's lower token count. Measure TTFT, tokens/sec, and total time for both formats and use whichever is faster.
|
||
|
||
See [benchmarks](#benchmarks) for concrete comparisons across different data structures.
|
||
|
||
## Benchmarks
|
||
|
||
Benchmarks are organized into two tracks to ensure fair comparisons:
|
||
|
||
- **Mixed-Structure Track**: Datasets with nested or semi-uniform structures (TOON vs JSON, YAML, XML). CSV excluded as it cannot properly represent these structures.
|
||
- **Flat-Only Track**: Datasets with flat tabular structures where CSV is applicable (CSV vs TOON vs JSON, YAML, XML).
|
||
|
||
### Retrieval Accuracy
|
||
|
||
<!-- automd:file src="./benchmarks/results/retrieval-accuracy.md" -->
|
||
|
||
Benchmarks test LLM comprehension across different input formats using 209 data retrieval questions on 4 models.
|
||
|
||
<details>
|
||
<summary><strong>Show Dataset Catalog</strong></summary>
|
||
|
||
#### Dataset Catalog
|
||
|
||
| Dataset | Rows | Structure | CSV Support | Eligibility |
|
||
| ------- | ---- | --------- | ----------- | ----------- |
|
||
| Uniform employee records | 100 | uniform | ✓ | 100% |
|
||
| E-commerce orders with nested structures | 50 | nested | ✗ | 33% |
|
||
| Time-series analytics data | 60 | uniform | ✓ | 100% |
|
||
| Top 100 GitHub repositories | 100 | uniform | ✓ | 100% |
|
||
| Semi-uniform event logs | 75 | semi-uniform | ✗ | 50% |
|
||
| Deeply nested configuration | 11 | deep | ✗ | 0% |
|
||
| Valid complete dataset (control) | 20 | uniform | ✓ | 100% |
|
||
| Array truncated: 3 rows removed from end | 17 | uniform | ✓ | 100% |
|
||
| Extra rows added beyond declared length | 23 | uniform | ✓ | 100% |
|
||
| Inconsistent field count (missing salary in row 10) | 20 | uniform | ✓ | 100% |
|
||
| Missing required fields (no email in multiple rows) | 20 | uniform | ✓ | 100% |
|
||
|
||
**Structure classes:**
|
||
- **uniform**: All objects have identical fields with primitive values
|
||
- **semi-uniform**: Mix of uniform and non-uniform structures
|
||
- **nested**: Objects with nested structures (nested objects or arrays)
|
||
- **deep**: Highly nested with minimal tabular eligibility
|
||
|
||
**CSV Support:** ✓ (supported), ✗ (not supported – would require lossy flattening)
|
||
|
||
**Eligibility:** Percentage of arrays that qualify for TOON's tabular format (uniform objects with primitive values)
|
||
|
||
</details>
|
||
|
||
#### Efficiency Ranking (Accuracy per 1K Tokens)
|
||
|
||
Each format's overall performance, balancing accuracy against token cost:
|
||
|
||
```
|
||
TOON ████████████████████ 26.9 │ 73.9% acc │ 2,744 tokens
|
||
JSON compact █████████████████░░░ 22.9 │ 70.7% acc │ 3,081 tokens
|
||
YAML ██████████████░░░░░░ 18.6 │ 69.0% acc │ 3,719 tokens
|
||
JSON ███████████░░░░░░░░░ 15.3 │ 69.7% acc │ 4,545 tokens
|
||
XML ██████████░░░░░░░░░░ 13.0 │ 67.1% acc │ 5,167 tokens
|
||
```
|
||
|
||
TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.6% fewer tokens**.
|
||
|
||
**Note on CSV:** Excluded from ranking as it only supports 109 of 209 questions (flat tabular data only). While CSV is highly token-efficient for simple tabular data, it cannot represent nested structures that other formats handle.
|
||
|
||
#### Per-Model Accuracy
|
||
|
||
Accuracy across 4 LLMs on 209 data retrieval questions:
|
||
|
||
```
|
||
claude-haiku-4-5-20251001
|
||
→ TOON ████████████░░░░░░░░ 59.8% (125/209)
|
||
JSON ███████████░░░░░░░░░ 57.4% (120/209)
|
||
YAML ███████████░░░░░░░░░ 56.0% (117/209)
|
||
XML ███████████░░░░░░░░░ 55.5% (116/209)
|
||
JSON compact ███████████░░░░░░░░░ 55.0% (115/209)
|
||
CSV ██████████░░░░░░░░░░ 50.5% (55/109)
|
||
|
||
gemini-2.5-flash
|
||
→ TOON ██████████████████░░ 87.6% (183/209)
|
||
CSV █████████████████░░░ 86.2% (94/109)
|
||
JSON compact ████████████████░░░░ 82.3% (172/209)
|
||
YAML ████████████████░░░░ 79.4% (166/209)
|
||
XML ████████████████░░░░ 79.4% (166/209)
|
||
JSON ███████████████░░░░░ 77.0% (161/209)
|
||
|
||
gpt-5-nano
|
||
→ TOON ██████████████████░░ 90.9% (190/209)
|
||
JSON compact ██████████████████░░ 90.9% (190/209)
|
||
JSON ██████████████████░░ 89.0% (186/209)
|
||
CSV ██████████████████░░ 89.0% (97/109)
|
||
YAML █████████████████░░░ 87.1% (182/209)
|
||
XML ████████████████░░░░ 80.9% (169/209)
|
||
|
||
grok-4-fast-non-reasoning
|
||
→ TOON ███████████░░░░░░░░░ 57.4% (120/209)
|
||
JSON ███████████░░░░░░░░░ 55.5% (116/209)
|
||
JSON compact ███████████░░░░░░░░░ 54.5% (114/209)
|
||
YAML ███████████░░░░░░░░░ 53.6% (112/209)
|
||
XML ███████████░░░░░░░░░ 52.6% (110/209)
|
||
CSV ██████████░░░░░░░░░░ 52.3% (57/109)
|
||
```
|
||
|
||
> [!TIP] Results Summary
|
||
> TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.6% fewer tokens** on these datasets.
|
||
|
||
<details>
|
||
<summary><strong>Performance by dataset, model, and question type</strong></summary>
|
||
|
||
#### Performance by Question Type
|
||
|
||
| Question Type | TOON | JSON compact | JSON | CSV | YAML | XML |
|
||
| ------------- | ---- | ---- | ---- | ---- | ---- | ---- |
|
||
| Field Retrieval | 99.6% | 99.3% | 99.3% | 100.0% | 98.2% | 98.9% |
|
||
| Aggregation | 54.4% | 47.2% | 48.8% | 44.0% | 47.6% | 41.3% |
|
||
| Filtering | 56.3% | 57.3% | 50.5% | 49.1% | 51.0% | 47.9% |
|
||
| Structure Awareness | 88.0% | 83.0% | 83.0% | 85.9% | 80.0% | 80.0% |
|
||
| Structural Validation | 70.0% | 45.0% | 50.0% | 80.0% | 60.0% | 80.0% |
|
||
|
||
#### Performance by Dataset
|
||
|
||
##### Uniform employee records
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 72.0% | 2,352 | 118/164 |
|
||
| `toon` | 73.8% | 2,518 | 121/164 |
|
||
| `json-compact` | 69.5% | 3,953 | 114/164 |
|
||
| `yaml` | 68.3% | 4,982 | 112/164 |
|
||
| `json-pretty` | 68.3% | 6,360 | 112/164 |
|
||
| `xml` | 69.5% | 7,324 | 114/164 |
|
||
|
||
##### E-commerce orders with nested structures
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `toon` | 81.1% | 7,232 | 133/164 |
|
||
| `json-compact` | 76.8% | 6,794 | 126/164 |
|
||
| `yaml` | 75.6% | 8,347 | 124/164 |
|
||
| `json-pretty` | 76.2% | 10,713 | 125/164 |
|
||
| `xml` | 74.4% | 12,023 | 122/164 |
|
||
|
||
##### Time-series analytics data
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 73.3% | 1,406 | 88/120 |
|
||
| `toon` | 72.5% | 1,548 | 87/120 |
|
||
| `json-compact` | 71.7% | 2,349 | 86/120 |
|
||
| `yaml` | 71.7% | 2,949 | 86/120 |
|
||
| `json-pretty` | 68.3% | 3,676 | 82/120 |
|
||
| `xml` | 68.3% | 4,384 | 82/120 |
|
||
|
||
##### Top 100 GitHub repositories
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `toon` | 62.9% | 8,779 | 83/132 |
|
||
| `csv` | 61.4% | 8,527 | 81/132 |
|
||
| `yaml` | 59.8% | 13,141 | 79/132 |
|
||
| `json-compact` | 55.3% | 11,464 | 73/132 |
|
||
| `json-pretty` | 56.1% | 15,157 | 74/132 |
|
||
| `xml` | 48.5% | 17,105 | 64/132 |
|
||
|
||
##### Semi-uniform event logs
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `json-compact` | 63.3% | 4,819 | 76/120 |
|
||
| `toon` | 57.5% | 5,799 | 69/120 |
|
||
| `json-pretty` | 59.2% | 6,797 | 71/120 |
|
||
| `yaml` | 48.3% | 5,827 | 58/120 |
|
||
| `xml` | 46.7% | 7,709 | 56/120 |
|
||
|
||
##### Deeply nested configuration
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `json-compact` | 92.2% | 574 | 107/116 |
|
||
| `toon` | 95.7% | 666 | 111/116 |
|
||
| `yaml` | 91.4% | 686 | 106/116 |
|
||
| `json-pretty` | 94.0% | 932 | 109/116 |
|
||
| `xml` | 92.2% | 1,018 | 107/116 |
|
||
|
||
##### Valid complete dataset (control)
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `toon` | 100.0% | 544 | 4/4 |
|
||
| `json-compact` | 100.0% | 795 | 4/4 |
|
||
| `yaml` | 100.0% | 1,003 | 4/4 |
|
||
| `json-pretty` | 100.0% | 1,282 | 4/4 |
|
||
| `csv` | 25.0% | 492 | 1/4 |
|
||
| `xml` | 0.0% | 1,467 | 0/4 |
|
||
|
||
##### Array truncated: 3 rows removed from end
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 100.0% | 425 | 4/4 |
|
||
| `xml` | 100.0% | 1,251 | 4/4 |
|
||
| `toon` | 0.0% | 474 | 0/4 |
|
||
| `json-compact` | 0.0% | 681 | 0/4 |
|
||
| `json-pretty` | 0.0% | 1,096 | 0/4 |
|
||
| `yaml` | 0.0% | 859 | 0/4 |
|
||
|
||
##### Extra rows added beyond declared length
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 100.0% | 566 | 4/4 |
|
||
| `toon` | 75.0% | 621 | 3/4 |
|
||
| `xml` | 100.0% | 1,692 | 4/4 |
|
||
| `yaml` | 75.0% | 1,157 | 3/4 |
|
||
| `json-compact` | 50.0% | 917 | 2/4 |
|
||
| `json-pretty` | 50.0% | 1,476 | 2/4 |
|
||
|
||
##### Inconsistent field count (missing salary in row 10)
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 75.0% | 489 | 3/4 |
|
||
| `yaml` | 100.0% | 996 | 4/4 |
|
||
| `toon` | 100.0% | 1,019 | 4/4 |
|
||
| `json-compact` | 75.0% | 790 | 3/4 |
|
||
| `xml` | 100.0% | 1,458 | 4/4 |
|
||
| `json-pretty` | 75.0% | 1,274 | 3/4 |
|
||
|
||
##### Missing required fields (no email in multiple rows)
|
||
|
||
| Format | Accuracy | Tokens | Correct/Total |
|
||
| ------ | -------- | ------ | ------------- |
|
||
| `csv` | 100.0% | 329 | 4/4 |
|
||
| `xml` | 100.0% | 1,411 | 4/4 |
|
||
| `toon` | 75.0% | 983 | 3/4 |
|
||
| `yaml` | 25.0% | 960 | 1/4 |
|
||
| `json-pretty` | 25.0% | 1,230 | 1/4 |
|
||
| `json-compact` | 0.0% | 755 | 0/4 |
|
||
|
||
#### Performance by Model
|
||
|
||
##### claude-haiku-4-5-20251001
|
||
|
||
| Format | Accuracy | Correct/Total |
|
||
| ------ | -------- | ------------- |
|
||
| `toon` | 59.8% | 125/209 |
|
||
| `json-pretty` | 57.4% | 120/209 |
|
||
| `yaml` | 56.0% | 117/209 |
|
||
| `xml` | 55.5% | 116/209 |
|
||
| `json-compact` | 55.0% | 115/209 |
|
||
| `csv` | 50.5% | 55/109 |
|
||
|
||
##### gemini-2.5-flash
|
||
|
||
| Format | Accuracy | Correct/Total |
|
||
| ------ | -------- | ------------- |
|
||
| `toon` | 87.6% | 183/209 |
|
||
| `csv` | 86.2% | 94/109 |
|
||
| `json-compact` | 82.3% | 172/209 |
|
||
| `yaml` | 79.4% | 166/209 |
|
||
| `xml` | 79.4% | 166/209 |
|
||
| `json-pretty` | 77.0% | 161/209 |
|
||
|
||
##### gpt-5-nano
|
||
|
||
| Format | Accuracy | Correct/Total |
|
||
| ------ | -------- | ------------- |
|
||
| `toon` | 90.9% | 190/209 |
|
||
| `json-compact` | 90.9% | 190/209 |
|
||
| `json-pretty` | 89.0% | 186/209 |
|
||
| `csv` | 89.0% | 97/109 |
|
||
| `yaml` | 87.1% | 182/209 |
|
||
| `xml` | 80.9% | 169/209 |
|
||
|
||
##### grok-4-fast-non-reasoning
|
||
|
||
| Format | Accuracy | Correct/Total |
|
||
| ------ | -------- | ------------- |
|
||
| `toon` | 57.4% | 120/209 |
|
||
| `json-pretty` | 55.5% | 116/209 |
|
||
| `json-compact` | 54.5% | 114/209 |
|
||
| `yaml` | 53.6% | 112/209 |
|
||
| `xml` | 52.6% | 110/209 |
|
||
| `csv` | 52.3% | 57/109 |
|
||
|
||
</details>
|
||
|
||
#### What's Being Measured
|
||
|
||
This benchmark tests **LLM comprehension and data retrieval accuracy** across different input formats. Each LLM receives formatted data and must answer questions about it. This does **not** test the model's ability to generate TOON output – only to read and understand it.
|
||
|
||
#### Datasets Tested
|
||
|
||
Eleven datasets designed to test different structural patterns and validation capabilities:
|
||
|
||
**Primary datasets:**
|
||
1. **Tabular** (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
|
||
2. **Nested** (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
|
||
3. **Analytics** (60 days of metrics): Time-series data with dates and numeric values.
|
||
4. **GitHub** (100 repositories): Real-world data from top GitHub repos by stars.
|
||
5. **Event Logs** (75 logs): Semi-uniform data with ~50% flat logs and ~50% with nested error objects.
|
||
6. **Nested Config** (1 configuration): Deeply nested configuration with minimal tabular eligibility.
|
||
|
||
**Structural validation datasets:**
|
||
7. **Control**: Valid complete dataset (baseline for validation)
|
||
8. **Truncated**: Array with 3 rows removed from end (tests `[N]` length detection)
|
||
9. **Extra rows**: Array with 3 additional rows beyond declared length
|
||
10. **Width mismatch**: Inconsistent field count (missing salary in row 10)
|
||
11. **Missing fields**: Systematic field omissions (no email in multiple rows)
|
||
|
||
#### Question Types
|
||
|
||
209 questions are generated dynamically across five categories:
|
||
|
||
- **Field retrieval (33%)**: Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)
|
||
- Example: "What is Alice's salary?" → `75000`
|
||
- Example: "How many items are in order ORD-0042?" → `3`
|
||
- Example: "What is the customer name for order ORD-0042?" → `John Doe`
|
||
|
||
- **Aggregation (30%)**: Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)
|
||
- Example: "How many employees work in Engineering?" → `17`
|
||
- Example: "What is the total revenue across all orders?" → `45123.50`
|
||
- Example: "How many employees have salary > 80000?" → `23`
|
||
|
||
- **Filtering (23%)**: Multi-condition queries requiring compound logic (AND constraints across fields)
|
||
- Example: "How many employees in Sales have salary > 80000?" → `5`
|
||
- Example: "How many active employees have more than 10 years of experience?" → `8`
|
||
|
||
- **Structure awareness (12%)**: Tests format-native structural affordances (TOON's `[N]` count and `{fields}`, CSV's header row)
|
||
- Example: "How many employees are in the dataset?" → `100`
|
||
- Example: "List the field names for employees" → `id, name, email, department, salary, yearsExperience, active`
|
||
- Example: "What is the department of the last employee?" → `Sales`
|
||
|
||
- **Structural validation (2%)**: Tests ability to detect incomplete, truncated, or corrupted data using structural metadata
|
||
- Example: "Is this data complete and valid?" → `YES` (control dataset) or `NO` (corrupted datasets)
|
||
- Tests TOON's `[N]` length validation and `{fields}` consistency checking
|
||
- Demonstrates CSV's lack of structural validation capabilities
|
||
|
||
#### Evaluation Process
|
||
|
||
1. **Format conversion**: Each dataset is converted to all 6 formats (TOON, JSON compact, JSON, CSV, YAML, XML).
|
||
2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer.
|
||
3. **Validate deterministically**: Answers are validated using type-aware comparison (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`) without requiring an LLM judge.
|
||
|
||
#### Models & Configuration
|
||
|
||
- **Models tested**: `claude-haiku-4-5-20251001`, `gemini-2.5-flash`, `gpt-5-nano`, `grok-4-fast-non-reasoning`
|
||
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding (GPT-5 tokenizer)
|
||
- **Temperature**: Not set (models use their defaults)
|
||
- **Total evaluations**: 209 questions × 6 formats × 4 models = 5,016 LLM calls
|
||
|
||
<!-- /automd -->
|
||
|
||
### Token Efficiency
|
||
|
||
Token counts are measured using the GPT-5 `o200k_base` tokenizer via [`gpt-tokenizer`](https://github.com/niieani/gpt-tokenizer). Savings are calculated against formatted JSON (2-space indentation) as the primary baseline, with additional comparisons to compact JSON (minified), YAML, and XML. Actual savings vary by model and tokenizer.
|
||
|
||
The benchmarks test datasets across different structural patterns (uniform, semi-uniform, nested, deeply nested) to show where TOON excels and where other formats may be better.
|
||
|
||
<!-- automd:file src="./benchmarks/results/token-efficiency.md" -->
|
||
|
||
#### Mixed-Structure Track
|
||
|
||
Datasets with nested or semi-uniform structures. CSV excluded as it cannot properly represent these structures.
|
||
|
||
```
|
||
🛒 E-commerce orders with nested structures ┊ Tabular: 33%
|
||
│
|
||
TOON █████████████░░░░░░░ 72,771 tokens
|
||
├─ vs JSON (−33.1%) 108,806 tokens
|
||
├─ vs JSON compact (+5.5%) 68,975 tokens
|
||
├─ vs YAML (−14.2%) 84,780 tokens
|
||
└─ vs XML (−40.5%) 122,406 tokens
|
||
|
||
🧾 Semi-uniform event logs ┊ Tabular: 50%
|
||
│
|
||
TOON █████████████████░░░ 153,211 tokens
|
||
├─ vs JSON (−15.0%) 180,176 tokens
|
||
├─ vs JSON compact (+19.9%) 127,731 tokens
|
||
├─ vs YAML (−0.8%) 154,505 tokens
|
||
└─ vs XML (−25.2%) 204,777 tokens
|
||
|
||
🧩 Deeply nested configuration ┊ Tabular: 0%
|
||
│
|
||
TOON ██████████████░░░░░░ 631 tokens
|
||
├─ vs JSON (−31.3%) 919 tokens
|
||
├─ vs JSON compact (+11.9%) 564 tokens
|
||
├─ vs YAML (−6.2%) 673 tokens
|
||
└─ vs XML (−37.4%) 1,008 tokens
|
||
|
||
──────────────────────────────────── Total ────────────────────────────────────
|
||
TOON ████████████████░░░░ 226,613 tokens
|
||
├─ vs JSON (−21.8%) 289,901 tokens
|
||
├─ vs JSON compact (+14.9%) 197,270 tokens
|
||
├─ vs YAML (−5.6%) 239,958 tokens
|
||
└─ vs XML (−31.0%) 328,191 tokens
|
||
```
|
||
|
||
#### Flat-Only Track
|
||
|
||
Datasets with flat tabular structures where CSV is applicable.
|
||
|
||
```
|
||
👥 Uniform employee records ┊ Tabular: 100%
|
||
│
|
||
CSV ███████████████████░ 46,954 tokens
|
||
TOON ████████████████████ 49,831 tokens (+6.1% vs CSV)
|
||
├─ vs JSON (−60.7%) 126,860 tokens
|
||
├─ vs JSON compact (−36.8%) 78,856 tokens
|
||
├─ vs YAML (−50.0%) 99,706 tokens
|
||
└─ vs XML (−66.0%) 146,444 tokens
|
||
|
||
📈 Time-series analytics data ┊ Tabular: 100%
|
||
│
|
||
CSV ██████████████████░░ 8,388 tokens
|
||
TOON ████████████████████ 9,120 tokens (+8.7% vs CSV)
|
||
├─ vs JSON (−59.0%) 22,250 tokens
|
||
├─ vs JSON compact (−35.8%) 14,216 tokens
|
||
├─ vs YAML (−48.9%) 17,863 tokens
|
||
└─ vs XML (−65.7%) 26,621 tokens
|
||
|
||
⭐ Top 100 GitHub repositories ┊ Tabular: 100%
|
||
│
|
||
CSV ███████████████████░ 8,513 tokens
|
||
TOON ████████████████████ 8,745 tokens (+2.7% vs CSV)
|
||
├─ vs JSON (−42.3%) 15,145 tokens
|
||
├─ vs JSON compact (−23.7%) 11,455 tokens
|
||
├─ vs YAML (−33.4%) 13,129 tokens
|
||
└─ vs XML (−48.8%) 17,095 tokens
|
||
|
||
──────────────────────────────────── Total ────────────────────────────────────
|
||
CSV ███████████████████░ 63,855 tokens
|
||
TOON ████████████████████ 67,696 tokens (+6.0% vs CSV)
|
||
├─ vs JSON (−58.8%) 164,255 tokens
|
||
├─ vs JSON compact (−35.2%) 104,527 tokens
|
||
├─ vs YAML (−48.2%) 130,698 tokens
|
||
└─ vs XML (−64.4%) 190,160 tokens
|
||
```
|
||
|
||
<details>
|
||
<summary><strong>Show detailed examples</strong></summary>
|
||
|
||
#### 📈 Time-series analytics data
|
||
|
||
**Savings:** 13,130 tokens (59.0% reduction vs JSON)
|
||
|
||
**JSON** (22,250 tokens):
|
||
|
||
```json
|
||
{
|
||
"metrics": [
|
||
{
|
||
"date": "2025-01-01",
|
||
"views": 5715,
|
||
"clicks": 211,
|
||
"conversions": 28,
|
||
"revenue": 7976.46,
|
||
"bounceRate": 0.47
|
||
},
|
||
{
|
||
"date": "2025-01-02",
|
||
"views": 7103,
|
||
"clicks": 393,
|
||
"conversions": 28,
|
||
"revenue": 8360.53,
|
||
"bounceRate": 0.32
|
||
},
|
||
{
|
||
"date": "2025-01-03",
|
||
"views": 7248,
|
||
"clicks": 378,
|
||
"conversions": 24,
|
||
"revenue": 3212.57,
|
||
"bounceRate": 0.5
|
||
},
|
||
{
|
||
"date": "2025-01-04",
|
||
"views": 2927,
|
||
"clicks": 77,
|
||
"conversions": 11,
|
||
"revenue": 1211.69,
|
||
"bounceRate": 0.62
|
||
},
|
||
{
|
||
"date": "2025-01-05",
|
||
"views": 3530,
|
||
"clicks": 82,
|
||
"conversions": 8,
|
||
"revenue": 462.77,
|
||
"bounceRate": 0.56
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
**TOON** (9,120 tokens):
|
||
|
||
```
|
||
metrics[5]{date,views,clicks,conversions,revenue,bounceRate}:
|
||
2025-01-01,5715,211,28,7976.46,0.47
|
||
2025-01-02,7103,393,28,8360.53,0.32
|
||
2025-01-03,7248,378,24,3212.57,0.5
|
||
2025-01-04,2927,77,11,1211.69,0.62
|
||
2025-01-05,3530,82,8,462.77,0.56
|
||
```
|
||
|
||
---
|
||
|
||
#### ⭐ Top 100 GitHub repositories
|
||
|
||
**Savings:** 6,400 tokens (42.3% reduction vs JSON)
|
||
|
||
**JSON** (15,145 tokens):
|
||
|
||
```json
|
||
{
|
||
"repositories": [
|
||
{
|
||
"id": 28457823,
|
||
"name": "freeCodeCamp",
|
||
"repo": "freeCodeCamp/freeCodeCamp",
|
||
"description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…",
|
||
"createdAt": "2014-12-24T17:49:19Z",
|
||
"updatedAt": "2025-10-28T11:58:08Z",
|
||
"pushedAt": "2025-10-28T10:17:16Z",
|
||
"stars": 430886,
|
||
"watchers": 8583,
|
||
"forks": 42146,
|
||
"defaultBranch": "main"
|
||
},
|
||
{
|
||
"id": 132750724,
|
||
"name": "build-your-own-x",
|
||
"repo": "codecrafters-io/build-your-own-x",
|
||
"description": "Master programming by recreating your favorite technologies from scratch.",
|
||
"createdAt": "2018-05-09T12:03:18Z",
|
||
"updatedAt": "2025-10-28T12:37:11Z",
|
||
"pushedAt": "2025-10-10T18:45:01Z",
|
||
"stars": 430877,
|
||
"watchers": 6332,
|
||
"forks": 40453,
|
||
"defaultBranch": "master"
|
||
},
|
||
{
|
||
"id": 21737465,
|
||
"name": "awesome",
|
||
"repo": "sindresorhus/awesome",
|
||
"description": "😎 Awesome lists about all kinds of interesting topics",
|
||
"createdAt": "2014-07-11T13:42:37Z",
|
||
"updatedAt": "2025-10-28T12:40:21Z",
|
||
"pushedAt": "2025-10-27T17:57:31Z",
|
||
"stars": 410052,
|
||
"watchers": 8017,
|
||
"forks": 32029,
|
||
"defaultBranch": "main"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
**TOON** (8,745 tokens):
|
||
|
||
```
|
||
repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}:
|
||
28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…","2014-12-24T17:49:19Z","2025-10-28T11:58:08Z","2025-10-28T10:17:16Z",430886,8583,42146,main
|
||
132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-28T12:37:11Z","2025-10-10T18:45:01Z",430877,6332,40453,master
|
||
21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-28T12:40:21Z","2025-10-27T17:57:31Z",410052,8017,32029,main
|
||
```
|
||
|
||
</details>
|
||
|
||
<!-- /automd -->
|
||
|
||
## Installation & Quick Start
|
||
|
||
### CLI (No Installation Required)
|
||
|
||
Try TOON instantly with npx:
|
||
|
||
```bash
|
||
# Convert JSON to TOON
|
||
npx @toon-format/cli input.json -o output.toon
|
||
|
||
# Pipe from stdin
|
||
echo '{"name": "Ada", "role": "dev"}' | npx @toon-format/cli
|
||
```
|
||
|
||
See the [CLI section](#cli) for all options and examples.
|
||
|
||
### TypeScript Library
|
||
|
||
```bash
|
||
# npm
|
||
npm install @toon-format/toon
|
||
|
||
# pnpm
|
||
pnpm add @toon-format/toon
|
||
|
||
# yarn
|
||
yarn add @toon-format/toon
|
||
```
|
||
|
||
**Example usage:**
|
||
|
||
```ts
|
||
import { encode } from '@toon-format/toon'
|
||
|
||
const data = {
|
||
users: [
|
||
{ id: 1, name: 'Alice', role: 'admin' },
|
||
{ id: 2, name: 'Bob', role: 'user' }
|
||
]
|
||
}
|
||
|
||
console.log(encode(data))
|
||
// users[2]{id,name,role}:
|
||
// 1,Alice,admin
|
||
// 2,Bob,user
|
||
```
|
||
|
||
## Playgrounds
|
||
|
||
Experiment with TOON format interactively using these community-built tools for token comparison, format conversion, and validation:
|
||
|
||
- [Format Tokenization Playground](https://www.curiouslychase.com/playground/format-tokenization-exploration)
|
||
- [TOON Tools](https://toontools.vercel.app/)
|
||
|
||
## CLI
|
||
|
||
Command-line tool for quick JSON↔TOON conversions, token analysis, and pipeline integration. Auto-detects format from file extension, supports stdin/stdout workflows, and offers delimiter options for maximum efficiency.
|
||
|
||
```bash
|
||
# Encode JSON to TOON (auto-detected)
|
||
npx @toon-format/cli input.json -o output.toon
|
||
|
||
# Decode TOON to JSON (auto-detected)
|
||
npx @toon-format/cli data.toon -o output.json
|
||
|
||
# Pipe from stdin (no argument needed)
|
||
cat data.json | npx @toon-format/cli
|
||
echo '{"name": "Ada"}' | npx @toon-format/cli
|
||
|
||
# Output to stdout
|
||
npx @toon-format/cli input.json
|
||
|
||
# Show token savings
|
||
npx @toon-format/cli data.json --stats
|
||
```
|
||
|
||
> [!TIP]
|
||
> See the full [CLI documentation](https://toonformat.dev/cli/) for all options, examples, and advanced usage.
|
||
|
||
## Format Overview
|
||
|
||
Detailed syntax references, implementation guides, and quick lookups for understanding and using the TOON format.
|
||
|
||
- [Format Overview](https://toonformat.dev/guide/format-overview) – Complete syntax documentation
|
||
- [Syntax Cheatsheet](https://toonformat.dev/reference/syntax-cheatsheet) – Quick reference
|
||
- [API Reference](https://toonformat.dev/reference/api) – Encode/decode usage (TypeScript)
|
||
|
||
## Using TOON with LLMs
|
||
|
||
TOON works best when you show the format instead of describing it. The structure is self-documenting – models parse it naturally once they see the pattern. Wrap data in ` ```toon` code blocks for input, and show the expected header template when asking models to generate TOON. Use tab delimiters for even better token efficiency.
|
||
|
||
Follow the detailed [LLM integration guide](https://toonformat.dev/guide/llm-prompts) for strategies, examples, and validation techniques.
|
||
|
||
## Documentation
|
||
|
||
Comprehensive guides, references, and resources to help you get the most out of the TOON format and tools.
|
||
|
||
**Getting Started**
|
||
- [Introduction & Installation](https://toonformat.dev/guide/getting-started) – What TOON is, when to use it, first steps
|
||
- [Format Overview](https://toonformat.dev/guide/format-overview) – Complete syntax with examples
|
||
- [Benchmarks](https://toonformat.dev/guide/benchmarks) – Accuracy & token efficiency results
|
||
|
||
**Tools & Integration**
|
||
- [CLI](https://toonformat.dev/cli/) – Command-line tool for JSON↔TOON conversions
|
||
- [Using TOON with LLMs](https://toonformat.dev/guide/llm-prompts) – Prompting strategies & validation
|
||
- [Playgrounds](https://toonformat.dev/ecosystem/tools-and-playgrounds) – Interactive tools
|
||
|
||
**Reference**
|
||
- [API Reference](https://toonformat.dev/reference/api) – TypeScript/JavaScript encode/decode API
|
||
- [Syntax Cheatsheet](https://toonformat.dev/reference/syntax-cheatsheet) – Quick format lookup
|
||
- [Specification v2.0](https://github.com/toon-format/spec/blob/main/SPEC.md) – Normative rules for implementers
|
||
|
||
## Other Implementations
|
||
|
||
> [!NOTE]
|
||
> When implementing TOON in other languages, please follow the [specification](https://github.com/toon-format/spec/blob/main/SPEC.md) (currently v2.0) to ensure compatibility across implementations. The [conformance tests](https://github.com/toon-format/spec/tree/main/tests) provide language-agnostic test fixtures that validate your implementations.
|
||
|
||
### Official Implementations
|
||
|
||
> [!TIP]
|
||
> These implementations are actively being developed by dedicated teams. Contributions are welcome! Join the effort by opening issues, submitting PRs, or discussing implementation details in the respective repositories.
|
||
|
||
- **.NET:** [toon_format](https://github.com/toon-format/toon-dotnet) *(in development)*
|
||
- **Dart:** [toon](https://github.com/toon-format/toon-dart) *(in development)*
|
||
- **Go:** [toon-go](https://github.com/toon-format/toon-go) *(in development)*
|
||
- **Python:** [toon_format](https://github.com/toon-format/toon-python) *(in development)*
|
||
- **Rust:** [toon_format](https://github.com/toon-format/toon-rust) *(in development)*
|
||
|
||
### Community Implementations
|
||
|
||
- **C++:** [ctoon](https://github.com/mohammadraziei/ctoon)
|
||
- **Clojure:** [toon](https://github.com/vadelabs/toon)
|
||
- **Crystal:** [toon-crystal](https://github.com/mamantoha/toon-crystal)
|
||
- **Elixir:** [toon_ex](https://github.com/kentaro/toon_ex)
|
||
- **Gleam:** [toon_codec](https://github.com/axelbellec/toon_codec)
|
||
- **Go:** [gotoon](https://github.com/alpkeskin/gotoon)
|
||
- **Java:** [JToon](https://github.com/felipestanzani/JToon)
|
||
- **Scala:** [toon4s](https://github.com/vim89/toon4s)
|
||
- **Lua/Neovim:** [toon.nvim](https://github.com/thalesgelinger/toon.nvim)
|
||
- **OCaml:** [ocaml-toon](https://github.com/davesnx/ocaml-toon)
|
||
- **PHP:** [toon-php](https://github.com/HelgeSverre/toon-php)
|
||
- **Laravel Framework:** [laravel-toon](https://github.com/jobmetric/laravel-toon)
|
||
- **R**: [toon](https://github.com/laresbernardo/toon)
|
||
- **Ruby:** [toon-ruby](https://github.com/andrepcg/toon-ruby)
|
||
- **Swift:** [TOONEncoder](https://github.com/mattt/TOONEncoder)
|
||
- **Kotlin:** [Kotlin-Toon Encoder/Decoder](https://github.com/vexpera-br/kotlin-toon)
|
||
|
||
## Credits
|
||
|
||
- Logo design by [鈴木ックス(SZKX)](https://x.com/szkx_art)
|
||
|
||
## License
|
||
|
||
[MIT](./LICENSE) License © 2025-PRESENT [Johann Schopplich](https://github.com/johannschopplich)
|