Files
toon/benchmarks/results/accuracy/summary.json
2025-10-27 11:48:33 +01:00

95 lines
2.1 KiB
JSON

{
"formatResults": [
{
"format": "toon",
"accuracy": 0.7389937106918238,
"totalTokens": 4678,
"avgInputTokens": 4675,
"avgLatency": 1424,
"correctCount": 235,
"totalCount": 318
},
{
"format": "json",
"accuracy": 0.7358490566037735,
"totalTokens": 8713,
"avgInputTokens": 9177,
"avgLatency": 1678,
"correctCount": 234,
"totalCount": 318
},
{
"format": "markdown-kv",
"accuracy": 0.7358490566037735,
"totalTokens": 8649,
"avgInputTokens": 8242,
"avgLatency": 1724,
"correctCount": 234,
"totalCount": 318
},
{
"format": "csv",
"accuracy": 0.7232704402515723,
"totalTokens": 4745,
"avgInputTokens": 4878,
"avgLatency": 1573,
"correctCount": 230,
"totalCount": 318
},
{
"format": "yaml",
"accuracy": 0.7169811320754716,
"totalTokens": 7091,
"avgInputTokens": 7136,
"avgLatency": 1602,
"correctCount": 228,
"totalCount": 318
}
],
"questions": 159,
"models": [
"gpt-4o-mini",
"claude-haiku-4-5"
],
"datasets": [
{
"name": "tabular",
"description": "Uniform employee records (TOON optimal format)"
},
{
"name": "nested",
"description": "E-commerce orders with nested structures"
},
{
"name": "analytics",
"description": "Time-series analytics data"
},
{
"name": "github",
"description": "Popular GitHub repositories"
}
],
"tokenCounts": {
"json-tabular": 6347,
"json-nested": 9694,
"json-analytics": 3665,
"json-github": 15145,
"toon-tabular": 2483,
"toon-nested": 5967,
"toon-analytics": 1515,
"toon-github": 8745,
"csv-tabular": 2337,
"csv-nested": 6735,
"csv-analytics": 1393,
"csv-github": 8513,
"markdown-kv-tabular": 6270,
"markdown-kv-nested": 9110,
"markdown-kv-analytics": 3779,
"markdown-kv-github": 15436,
"yaml-tabular": 4969,
"yaml-nested": 7328,
"yaml-analytics": 2938,
"yaml-github": 13129
},
"timestamp": "2025-10-27T10:46:35.127Z"
}