mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 23:34:10 +08:00
97 lines
2.8 KiB
Markdown
97 lines
2.8 KiB
Markdown
### Retrieval Accuracy
|
|
|
|
Tested across **2 LLMs** with data retrieval tasks:
|
|
|
|
```
|
|
gpt-4o-mini ██████████████░░░░░░ 72.3% accuracy
|
|
claude-haiku-4-5 ███████████████░░░░░ 76.7% accuracy
|
|
```
|
|
|
|
**TOON achieves 73.9% accuracy (vs JSON's 73.6%) while using 46.3% fewer tokens.**
|
|
|
|
| Format | Accuracy | Average Tokens |
|
|
| ------ | -------- | -------------- |
|
|
| `toon` | 73.9% | 4.678 |
|
|
| `json` | 73.6% | 8.713 |
|
|
| `markdown-kv` | 73.6% | 8.649 |
|
|
| `csv` | 72.3% | 4.745 |
|
|
| `yaml` | 71.7% | 7.091 |
|
|
|
|
<details>
|
|
<summary><strong>View detailed breakdown by dataset and model</strong></summary>
|
|
|
|
#### Performance by Dataset
|
|
|
|
##### Uniform employee records (TOON optimal format)
|
|
|
|
| Format | Accuracy | Tokens | Correct/Total |
|
|
|--------|----------|--------|---------------|
|
|
| `toon` | 72.4% | 2.483 | 84/116 |
|
|
| `csv` | 69.0% | 2.337 | 80/116 |
|
|
| `yaml` | 68.1% | 4.969 | 79/116 |
|
|
| `markdown-kv` | 68.1% | 6.270 | 79/116 |
|
|
| `json` | 68.1% | 6.347 | 79/116 |
|
|
|
|
##### E-commerce orders with nested structures
|
|
|
|
| Format | Accuracy | Tokens | Correct/Total |
|
|
|--------|----------|--------|---------------|
|
|
| `toon` | 84.1% | 5.967 | 74/88 |
|
|
| `csv` | 83.0% | 6.735 | 73/88 |
|
|
| `yaml` | 81.8% | 7.328 | 72/88 |
|
|
| `markdown-kv` | 86.4% | 9.110 | 76/88 |
|
|
| `json` | 84.1% | 9.694 | 74/88 |
|
|
|
|
##### Time-series analytics data
|
|
|
|
| Format | Accuracy | Tokens | Correct/Total |
|
|
|--------|----------|--------|---------------|
|
|
| `csv` | 72.4% | 1.393 | 42/58 |
|
|
| `toon` | 70.7% | 1.515 | 41/58 |
|
|
| `yaml` | 72.4% | 2.938 | 42/58 |
|
|
| `json` | 74.1% | 3.665 | 43/58 |
|
|
| `markdown-kv` | 70.7% | 3.779 | 41/58 |
|
|
|
|
##### Popular GitHub repositories
|
|
|
|
| Format | Accuracy | Tokens | Correct/Total |
|
|
|--------|----------|--------|---------------|
|
|
| `toon` | 64.3% | 8.745 | 36/56 |
|
|
| `csv` | 62.5% | 8.513 | 35/56 |
|
|
| `json` | 67.9% | 15.145 | 38/56 |
|
|
| `markdown-kv` | 67.9% | 15.436 | 38/56 |
|
|
| `yaml` | 62.5% | 13.129 | 35/56 |
|
|
|
|
|
|
#### Performance by Model
|
|
|
|
##### gpt-4o-mini
|
|
|
|
| Format | Accuracy | Correct/Total |
|
|
|--------|----------|---------------|
|
|
| `toon` | 72.3% | 115/159 |
|
|
| `json` | 71.7% | 114/159 |
|
|
| `markdown-kv` | 70.4% | 112/159 |
|
|
| `csv` | 69.2% | 110/159 |
|
|
| `yaml` | 68.6% | 109/159 |
|
|
|
|
##### claude-haiku-4-5
|
|
|
|
| Format | Accuracy | Correct/Total |
|
|
|--------|----------|---------------|
|
|
| `markdown-kv` | 76.7% | 122/159 |
|
|
| `toon` | 75.5% | 120/159 |
|
|
| `json` | 75.5% | 120/159 |
|
|
| `csv` | 75.5% | 120/159 |
|
|
| `yaml` | 74.8% | 119/159 |
|
|
|
|
|
|
#### Methodology
|
|
|
|
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching)
|
|
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding
|
|
- **Question types**: Field retrieval, aggregation, and filtering tasks
|
|
- **Real data**: faker.js-generated datasets + real GitHub repository data
|
|
|
|
</details>
|