chore: fix linting issues

This commit is contained in:
Johann Schopplich
2025-10-27 11:49:40 +01:00
parent 3c840259fe
commit b2c58d2b97
5 changed files with 2 additions and 102 deletions

View File

@@ -259,7 +259,6 @@ claude-haiku-4-5 ███████████████░░░░
| `markdown-kv` | 67.9% | 15.436 | 38/56 |
| `yaml` | 62.5% | 13.129 | 35/56 |
#### Performance by Model
##### gpt-4o-mini
@@ -282,7 +281,6 @@ claude-haiku-4-5 ███████████████░░░░
| `csv` | 75.5% | 120/159 |
| `yaml` | 74.8% | 119/159 |
#### Methodology
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).

View File

@@ -1,96 +0,0 @@
### Retrieval Accuracy
Tested across **2 LLMs** with data retrieval tasks:
```
gpt-4o-mini ██████████████░░░░░░ 72.3% accuracy
claude-haiku-4-5 ███████████████░░░░░ 76.7% accuracy
```
**TOON achieves 73.9% accuracy (vs JSON's 73.6%) while using 46.3% fewer tokens.**
| Format | Accuracy | Average Tokens |
| ------ | -------- | -------------- |
| `toon` | 73.9% | 4.678 |
| `json` | 73.6% | 8.713 |
| `markdown-kv` | 73.6% | 8.649 |
| `csv` | 72.3% | 4.745 |
| `yaml` | 71.7% | 7.091 |
<details>
<summary><strong>View detailed breakdown by dataset and model</strong></summary>
#### Performance by Dataset
##### Uniform employee records (TOON optimal format)
| Format | Accuracy | Tokens | Correct/Total |
|--------|----------|--------|---------------|
| `toon` | 72.4% | 2.483 | 84/116 |
| `csv` | 69.0% | 2.337 | 80/116 |
| `yaml` | 68.1% | 4.969 | 79/116 |
| `markdown-kv` | 68.1% | 6.270 | 79/116 |
| `json` | 68.1% | 6.347 | 79/116 |
##### E-commerce orders with nested structures
| Format | Accuracy | Tokens | Correct/Total |
|--------|----------|--------|---------------|
| `toon` | 84.1% | 5.967 | 74/88 |
| `csv` | 83.0% | 6.735 | 73/88 |
| `yaml` | 81.8% | 7.328 | 72/88 |
| `markdown-kv` | 86.4% | 9.110 | 76/88 |
| `json` | 84.1% | 9.694 | 74/88 |
##### Time-series analytics data
| Format | Accuracy | Tokens | Correct/Total |
|--------|----------|--------|---------------|
| `csv` | 72.4% | 1.393 | 42/58 |
| `toon` | 70.7% | 1.515 | 41/58 |
| `yaml` | 72.4% | 2.938 | 42/58 |
| `json` | 74.1% | 3.665 | 43/58 |
| `markdown-kv` | 70.7% | 3.779 | 41/58 |
##### Popular GitHub repositories
| Format | Accuracy | Tokens | Correct/Total |
|--------|----------|--------|---------------|
| `toon` | 64.3% | 8.745 | 36/56 |
| `csv` | 62.5% | 8.513 | 35/56 |
| `json` | 67.9% | 15.145 | 38/56 |
| `markdown-kv` | 67.9% | 15.436 | 38/56 |
| `yaml` | 62.5% | 13.129 | 35/56 |
#### Performance by Model
##### gpt-4o-mini
| Format | Accuracy | Correct/Total |
|--------|----------|---------------|
| `toon` | 72.3% | 115/159 |
| `json` | 71.7% | 114/159 |
| `markdown-kv` | 70.4% | 112/159 |
| `csv` | 69.2% | 110/159 |
| `yaml` | 68.6% | 109/159 |
##### claude-haiku-4-5
| Format | Accuracy | Correct/Total |
|--------|----------|---------------|
| `markdown-kv` | 76.7% | 122/159 |
| `toon` | 75.5% | 120/159 |
| `json` | 75.5% | 120/159 |
| `csv` | 75.5% | 120/159 |
| `yaml` | 74.8% | 119/159 |
#### Methodology
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching)
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding
- **Question types**: Field retrieval, aggregation, and filtering tasks
- **Real data**: faker.js-generated datasets + real GitHub repository data
</details>

View File

@@ -17489,4 +17489,4 @@
"outputTokens": 5,
"latencyMs": 1537
}
]
]

View File

@@ -62,7 +62,6 @@ claude-haiku-4-5 ███████████████░░░░
| `markdown-kv` | 67.9% | 15.436 | 38/56 |
| `yaml` | 62.5% | 13.129 | 35/56 |
#### Performance by Model
##### gpt-4o-mini
@@ -85,7 +84,6 @@ claude-haiku-4-5 ███████████████░░░░
| `csv` | 75.5% | 120/159 |
| `yaml` | 74.8% | 119/159 |
#### Methodology
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).

View File

@@ -92,4 +92,4 @@
"yaml-github": 13129
},
"timestamp": "2025-10-27T10:46:35.127Z"
}
}