test: update retrieval accuracy benchmarks

This commit is contained in:
Johann Schopplich
2025-10-27 13:45:48 +01:00
parent b2c58d2b97
commit 1a5e6199ac
10 changed files with 5686 additions and 5709 deletions

View File

@@ -20,18 +20,69 @@ import { RATE_LIMIT_DELAY_MS } from './constants'
* Models used for evaluation
*/
export const models: Record<string, LanguageModelV2> = {
'gpt-4o-mini': openai('gpt-4o-mini'),
'gpt-5-nano': openai('gpt-5-nano'),
'claude-haiku-4-5': anthropic('claude-haiku-4-5-20251001'),
}
/**
* Validate an answer using LLM-as-judge approach
* More robust than string matching for LLM outputs
* Evaluate a single question with a specific format and model
*/
export async function validateAnswer(
actual: string,
expected: string,
question: string,
export async function evaluateQuestion(
question: Question,
formatName: string,
formattedData: string,
model: LanguageModelV2,
modelName: string,
): Promise<EvaluationResult> {
const prompt = `Given the following data in ${formatName} format:
\`\`\`
${formattedData}
\`\`\`
Question: ${question.prompt}
Provide only the direct answer, without any additional explanation or formatting.`
const startTime = performance.now()
const { text, usage } = await generateText({
model,
prompt,
temperature: model.modelId.startsWith('gpt-') ? undefined : 0,
})
await setTimeout(RATE_LIMIT_DELAY_MS)
const latencyMs = performance.now() - startTime
const correct = await validateAnswer({
actual: text.trim(),
expected: question.groundTruth,
question: question.prompt,
})
return {
questionId: question.id,
format: formatName,
model: modelName,
expected: question.groundTruth,
actual: text.trim(),
correct,
inputTokens: usage.inputTokens,
outputTokens: usage.outputTokens,
latencyMs,
}
}
/**
* Validate an answer using LLM-as-judge approach
*/
async function validateAnswer(
{
actual,
expected,
question,
}:
{ actual: string, expected: string, question: string },
): Promise<boolean> {
const prompt = `You are validating answers to questions about structured data.
@@ -49,10 +100,9 @@ Respond with only "YES" or "NO".`
try {
const { text } = await generateText({
model: models['gpt-4o-mini']!,
model: models['claude-haiku-4-5']!,
prompt,
temperature: 0,
maxOutputTokens: 16,
})
await setTimeout(RATE_LIMIT_DELAY_MS)
@@ -65,69 +115,3 @@ Respond with only "YES" or "NO".`
return actual.toLowerCase().trim() === expected.toLowerCase().trim()
}
}
/**
* Evaluate a single question with a specific format and model
*/
export async function evaluateQuestion(
question: Question,
formatName: string,
formattedData: string,
model: any,
modelName: string,
): Promise<EvaluationResult> {
const prompt = `Given the following data in ${formatName} format:
\`\`\`
${formattedData}
\`\`\`
Question: ${question.prompt}
Provide only the direct answer, without any additional explanation or formatting.`
const startTime = Date.now()
try {
const { text, usage } = await generateText({
model,
prompt,
temperature: 0,
maxOutputTokens: 50,
})
await setTimeout(RATE_LIMIT_DELAY_MS)
const latencyMs = Date.now() - startTime
const correct = await validateAnswer(text.trim(), question.groundTruth, question.prompt)
return {
questionId: question.id,
format: formatName,
model: modelName,
expected: question.groundTruth,
actual: text.trim(),
correct,
inputTokens: usage.inputTokens ?? 0,
outputTokens: usage.outputTokens ?? 0,
latencyMs,
}
}
catch (error) {
consola.error(`Error evaluating ${question.id} with ${formatName}/${modelName}:`, error)
await setTimeout(RATE_LIMIT_DELAY_MS)
return {
questionId: question.id,
format: formatName,
model: modelName,
expected: question.groundTruth,
actual: '',
correct: false,
inputTokens: 0,
outputTokens: 0,
latencyMs: Date.now() - startTime,
}
}
}

View File

@@ -37,15 +37,13 @@ export function calculateFormatResults(
.filter(([key]) => key.startsWith(`${formatName}-`))
.reduce((sum, [, tokens]) => sum + tokens, 0) / datasets.length
const avgInputTokens = formatResults.reduce((sum, r) => sum + r.inputTokens, 0) / totalCount
const avgLatency = formatResults.reduce((sum, r) => sum + r.latencyMs, 0) / totalCount
const averageLatency = formatResults.reduce((sum, r) => sum + r.latencyMs, 0) / totalCount
return {
format: formatName,
accuracy,
totalTokens: Math.round(avgTokens),
avgInputTokens: Math.round(avgInputTokens),
avgLatency: Math.round(avgLatency),
averageLatency: Math.round(averageLatency),
correctCount,
totalCount,
}
@@ -69,11 +67,13 @@ export function generateMarkdownReport(
const toon = formatResults.find(r => r.format === 'toon')
const json = formatResults.find(r => r.format === 'json')
// Model-by-model breakdown (most interesting result)
// Model-by-model breakdown with ASCII bars
const modelCount = Object.keys(models).length
lines.push(`Tested across **${modelCount} ${modelCount === 1 ? 'LLM' : 'LLMs'}** with data retrieval tasks:`, '', '```')
for (const modelName of Object.keys(models)) {
const modelNames = Object.keys(models)
for (let i = 0; i < modelNames.length; i++) {
const modelName = modelNames[i]!
const modelResults = formatResults.map((fr) => {
const modelFormatResults = results.filter(r => r.model === modelName && r.format === fr.format)
const correctCount = modelFormatResults.filter(r => r.correct).length
@@ -88,10 +88,16 @@ export function generateMarkdownReport(
}
}).sort((a, b) => b.accuracy - a.accuracy)
const bestResult = modelResults[0]!
const bar = createTokenBar(bestResult.accuracy, 1, 20)
lines.push(`${modelName.padEnd(20)} ${bar} ${(bestResult.accuracy * 100).toFixed(1)}% accuracy`)
// Add blank line before model name, except for first model
if (i > 0)
lines.push('')
lines.push(modelName)
for (const result of modelResults) {
const bar = createProgressBar(result.accuracy, 1, 20)
const accuracyStr = `${(result.accuracy * 100).toFixed(1)}%`.padStart(6)
const countStr = `(${result.correctCount}/${result.totalCount})`
lines.push(` ${result.format.padEnd(12)} ${bar} ${accuracyStr} ${countStr}`)
}
}
lines.push('```', '')
@@ -100,24 +106,12 @@ export function generateMarkdownReport(
if (toon && json) {
const tokenSavings = ((1 - toon.totalTokens / json.totalTokens) * 100).toFixed(1)
lines.push(
`**TOON achieves ${(toon.accuracy * 100).toFixed(1)}% accuracy (vs JSON's ${(json.accuracy * 100).toFixed(1)}%) while using ${tokenSavings}% fewer tokens.**`,
`**Tradeoff:** TOON achieves ${(toon.accuracy * 100).toFixed(1)}% accuracy (vs JSON's ${(json.accuracy * 100).toFixed(1)}%) while using ${tokenSavings}% fewer tokens.`,
'',
)
}
// Simple format comparison table
lines.push(
'| Format | Accuracy | Average Tokens |',
'| ------ | -------- | -------------- |',
)
for (const result of formatResults) {
lines.push(
`| \`${result.format}\` | ${(result.accuracy * 100).toFixed(1)}% | ${result.totalTokens.toLocaleString()} |`,
)
}
lines.push('', '<details>', '<summary><strong>View detailed breakdown by dataset and model</strong></summary>', '', '#### Performance by Dataset', '')
lines.push('<details>', '<summary><strong>View detailed breakdown by dataset and model</strong></summary>', '', '#### Performance by Dataset', '')
for (const dataset of datasets) {
lines.push(`##### ${dataset.description}`, '')
@@ -173,7 +167,7 @@ export function generateMarkdownReport(
}
// Model breakdown
lines.push('', '#### Performance by Model', '')
lines.push('#### Performance by Model', '')
for (const modelName of Object.keys(models)) {
lines.push(`##### ${modelName}`, '')
@@ -203,7 +197,6 @@ export function generateMarkdownReport(
// Methodology
lines.push(
'',
'#### Methodology',
'',
'- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).',
@@ -252,20 +245,20 @@ export async function saveResults(
// Save raw results
await fsp.writeFile(
path.join(resultsDir, 'raw-results.json'),
JSON.stringify(results, undefined, 2),
`${JSON.stringify(results, undefined, 2)}\n`,
)
// Save summary
await fsp.writeFile(
path.join(resultsDir, 'summary.json'),
JSON.stringify({
`${JSON.stringify({
formatResults,
questions: questions.length,
models: Object.keys(models),
datasets: datasets.map(d => ({ name: d.name, description: d.description })),
tokenCounts,
timestamp: new Date().toISOString(),
}, undefined, 2),
}, undefined, 2)}\n`,
)
// Generate markdown report
@@ -279,9 +272,9 @@ export async function saveResults(
}
/**
* Generate visual bar chart for token counts
* Generate visual progress bar using ASCII characters (█ for filled, ░ for empty)
*/
function createTokenBar(tokens: number, maxTokens: number, width = 30): string {
function createProgressBar(tokens: number, maxTokens: number, width = 30): string {
const filled = Math.round((tokens / maxTokens) * width)
const empty = width - filled
return '█'.repeat(filled) + '░'.repeat(empty)

View File

@@ -19,8 +19,8 @@ export interface EvaluationResult {
expected: string
actual: string
correct: boolean
inputTokens: number
outputTokens: number
inputTokens?: number
outputTokens?: number
latencyMs: number
}
@@ -28,8 +28,7 @@ export interface FormatResult {
format: string
accuracy: number
totalTokens: number
avgInputTokens: number
avgLatency: number
averageLatency: number
correctCount: number
totalCount: number
}