mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 23:34:10 +08:00
5.8 KiB
5.8 KiB
Retrieval Accuracy
Accuracy across 3 LLMs on 159 data retrieval questions:
gpt-5-nano
toon ████████████████████ 99.4% (158/159)
yaml ███████████████████░ 95.0% (151/159)
csv ██████████████████░░ 92.5% (147/159)
json ██████████████████░░ 92.5% (147/159)
xml ██████████████████░░ 91.2% (145/159)
claude-haiku-4-5
toon ███████████████░░░░░ 75.5% (120/159)
xml ███████████████░░░░░ 75.5% (120/159)
csv ███████████████░░░░░ 75.5% (120/159)
json ███████████████░░░░░ 75.5% (120/159)
yaml ███████████████░░░░░ 74.2% (118/159)
gemini-2.5-flash
xml ██████████████████░░ 91.8% (146/159)
csv █████████████████░░░ 86.2% (137/159)
toon █████████████████░░░ 84.9% (135/159)
json ████████████████░░░░ 81.8% (130/159)
yaml ████████████████░░░░ 78.6% (125/159)
Advantage: TOON achieves 86.6% accuracy (vs JSON's 83.2%) while using 46.3% fewer tokens.
Performance by dataset and model
Performance by Dataset
Uniform employee records (TOON optimal format)
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
87.4% | 2.483 | 152/174 |
csv |
82.8% | 2.337 | 144/174 |
yaml |
83.9% | 4.969 | 146/174 |
json |
83.9% | 6.347 | 146/174 |
xml |
88.5% | 7.314 | 154/174 |
E-commerce orders with nested structures
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
90.9% | 5.967 | 120/132 |
csv |
93.9% | 6.735 | 124/132 |
yaml |
87.1% | 7.328 | 115/132 |
json |
87.9% | 9.694 | 116/132 |
xml |
93.2% | 10.992 | 123/132 |
Time-series analytics data
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
89.7% | 1.393 | 78/87 |
toon |
88.5% | 1.515 | 77/87 |
yaml |
83.9% | 2.938 | 73/87 |
json |
88.5% | 3.665 | 77/87 |
xml |
85.1% | 4.376 | 74/87 |
Top 100 GitHub repositories
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
76.2% | 8.745 | 64/84 |
csv |
69.0% | 8.513 | 58/84 |
yaml |
71.4% | 13.129 | 60/84 |
json |
69.0% | 15.145 | 58/84 |
xml |
71.4% | 17.095 | 60/84 |
Performance by Model
gpt-5-nano
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
99.4% | 158/159 |
yaml |
95.0% | 151/159 |
csv |
92.5% | 147/159 |
json |
92.5% | 147/159 |
xml |
91.2% | 145/159 |
claude-haiku-4-5
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
75.5% | 120/159 |
xml |
75.5% | 120/159 |
csv |
75.5% | 120/159 |
json |
75.5% | 120/159 |
yaml |
74.2% | 118/159 |
gemini-2.5-flash
| Format | Accuracy | Correct/Total |
|---|---|---|
xml |
91.8% | 146/159 |
csv |
86.2% | 137/159 |
toon |
84.9% | 135/159 |
json |
81.8% | 130/159 |
yaml |
78.6% | 125/159 |
How the benchmark works
What's Being Measured
This benchmark tests LLM comprehension and data retrieval accuracy across different input formats. Each LLM receives formatted data and must answer questions about it (this does not test model's ability to generate TOON output).
Datasets Tested
Four datasets designed to test different structural patterns:
- Tabular (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
- Nested (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
- Analytics (60 days of metrics): Time-series data with dates and numeric values.
- GitHub (100 repositories): Real-world data from top GitHub repos by stars.
Question Types
159 questions are generated dynamically across three categories:
-
Field retrieval (50%): Direct value lookups
- Example: "What is Alice's salary?" →
75000 - Example: "What is the customer name for order ORD-0042?" →
John Doe
- Example: "What is Alice's salary?" →
-
Aggregation (25%): Counting and summation tasks
- Example: "How many employees work in Engineering?" →
17 - Example: "What is the total revenue across all orders?" →
45123.50
- Example: "How many employees work in Engineering?" →
-
Filtering (25%): Conditional queries
- Example: "How many employees in Sales have salary > 80000?" →
5 - Example: "How many orders have total > 400?" →
12
- Example: "How many employees in Sales have salary > 80000?" →
Evaluation Process
- Format conversion: Each dataset is converted to all 5 formats (TOON, JSON, YAML, CSV, XML).
- Query LLM: Each model receives formatted data + question in a prompt and extracts the answer.
- Validate with LLM-as-judge:
gpt-5-nanovalidates if the answer is semantically correct (e.g.,50000=$50,000,Engineering=engineering,2025-01-01=January 1, 2025).
Models & Configuration
- Models tested:
gpt-5-nano,claude-haiku-4-5,gemini-2.5-flash - Token counting: Using
gpt-tokenizerwitho200k_baseencoding (GPT-5 tokenizer) - Temperature: 0 (for non-reasoning models)
- Total evaluations: 159 questions × 5 formats × 3 models = 2,385 LLM calls