Files
toon/benchmarks/scripts/accuracy-benchmark.ts
2025-11-06 14:45:44 +01:00

208 lines
6.5 KiB
TypeScript

import type { Question } from '../src/types'
import * as fsp from 'node:fs/promises'
import * as path from 'node:path'
import process from 'node:process'
import * as prompts from '@clack/prompts'
import PQueue from 'p-queue'
import { BENCHMARKS_DIR, DEFAULT_CONCURRENCY, DRY_RUN, DRY_RUN_LIMITS, MODEL_RPM_LIMITS, ROOT_DIR } from '../src/constants'
import { ACCURACY_DATASETS } from '../src/datasets'
import { evaluateQuestion, models } from '../src/evaluate'
import { formatters, supportsCSV } from '../src/formatters'
import { generateQuestions } from '../src/questions'
import { calculateFormatResults, calculateTokenCounts, generateAccuracyReport } from '../src/report'
import { getAllModelResults, hasModelResults, saveModelResults } from '../src/storage'
import { ensureDir } from '../src/utils'
// Constants
const PROGRESS_UPDATE_INTERVAL = 10
const RATE_LIMIT_INTERVAL_MS = 60_000
prompts.intro('Retrieval Accuracy Benchmark')
/**
* Generate evaluation tasks for a model
*/
function generateEvaluationTasks(questions: Question[]): { question: Question, formatName: string }[] {
const tasks: { question: Question, formatName: string }[] = []
for (const question of questions) {
for (const [formatName] of Object.entries(formatters)) {
// Skip CSV for datasets that don't support it
const dataset = ACCURACY_DATASETS.find(d => d.name === question.dataset)
if (formatName === 'csv' && dataset && !supportsCSV(dataset))
continue
tasks.push({ question, formatName })
}
}
return tasks
}
/**
* Check which models already have saved results
*/
async function checkExistingResults(activeModels: typeof models) {
const existingModelResults: Record<string, boolean> = {}
for (const model of activeModels) {
const existingResult = await hasModelResults(model.modelId)
if (existingResult)
existingModelResults[model.modelId] = existingResult
}
return existingModelResults
}
/**
* Create a progress updater function
*/
function createProgressUpdater(spinner: ReturnType<typeof prompts.spinner>, total: number) {
let completed = 0
return () => {
completed++
if (completed % PROGRESS_UPDATE_INTERVAL === 0 || completed === total) {
const percent = ((completed / total) * 100).toFixed(1)
spinner.message(`Progress: ${completed}/${total} (${percent}%)`)
}
}
}
/**
* Create a rate-limited queue for model evaluation
*/
function createEvaluationQueue(modelId: string) {
const rpmLimit = MODEL_RPM_LIMITS[modelId]
return new PQueue({
concurrency: DEFAULT_CONCURRENCY,
intervalCap: rpmLimit ?? Infinity,
interval: rpmLimit ? RATE_LIMIT_INTERVAL_MS : 0,
})
}
// Prompt user to select which models to benchmark
const modelChoices = models.map(({ modelId }) => ({
value: modelId,
label: modelId,
}))
const selectedModels = await prompts.multiselect({
message: 'Select models to benchmark (Space to select, Enter to confirm)',
options: modelChoices,
required: true,
})
if (prompts.isCancel(selectedModels)) {
prompts.cancel('Benchmark cancelled')
process.exit(0)
}
const activeModels = models.filter(m => selectedModels.includes(m.modelId))
prompts.log.info(`Selected ${activeModels.length} model(s): ${activeModels.map(m => m.modelId).join(', ')}`)
// Check which models already have results
const existingModelResults = await checkExistingResults(activeModels)
if (Object.keys(existingModelResults).length > 0) {
prompts.log.info(`Found existing results for ${Object.keys(existingModelResults).length} model(s)`)
}
if (DRY_RUN) {
prompts.log.info('Limiting questions and models for dry run')
}
let questions = generateQuestions()
// Apply dry run limits if enabled
if (DRY_RUN && DRY_RUN_LIMITS.maxQuestions) {
questions = questions.slice(0, DRY_RUN_LIMITS.maxQuestions)
}
prompts.log.info(`Evaluating ${questions.length} questions`)
prompts.log.info(`Testing ${Object.keys(formatters).length} formats`)
// Evaluate each model separately and save results incrementally
for (const model of activeModels) {
const modelId = model.modelId
// Skip if results already exist
if (existingModelResults[modelId]) {
prompts.log.info(`Skipping ${modelId} (results already exist)`)
continue
}
prompts.log.step(`Running benchmark for ${modelId}`)
// Generate evaluation tasks for this model
const tasks = generateEvaluationTasks(questions)
const total = tasks.length
const rpmLimit = MODEL_RPM_LIMITS[modelId]
const queue = createEvaluationQueue(modelId)
const evalSpinner = prompts.spinner()
evalSpinner.start(`Running ${total} evaluations (concurrency: ${DEFAULT_CONCURRENCY}, RPM limit: ${rpmLimit ?? 'unlimited'})`)
const updateProgress = createProgressUpdater(evalSpinner, total)
// Queue all tasks
const modelResultPromises = tasks.map(task =>
queue.add(async () => {
// Format data on-demand
const dataset = ACCURACY_DATASETS.find(d => d.name === task.question.dataset)!
const formatter = formatters[task.formatName]!
const formattedData = formatter(dataset.data)
const result = await evaluateQuestion({
question: task.question,
formatName: task.formatName,
formattedData,
model,
})
// Progress update after task completes
updateProgress()
return result
}),
)
// Wait for all tasks to complete
const modelResults = await Promise.all(modelResultPromises)
evalSpinner.stop(`Evaluation complete for ${modelId}`)
// Save results immediately for this model
await saveModelResults(modelId, modelResults)
prompts.log.success(`Saved results for ${modelId}`)
}
// Generate/regenerate markdown report from all available model results
const reportSpinner = prompts.spinner()
reportSpinner.start('Generating report from all model results')
// Load all available model results (including any that were skipped)
const allModelResults = await getAllModelResults()
const allResults = Object.values(allModelResults).flat()
if (allResults.length === 0) {
prompts.log.warn('No results available to generate report')
process.exit(0)
}
const tokenCounts = calculateTokenCounts(formatters)
const formatResults = calculateFormatResults(allResults, tokenCounts)
const accuracyReport = generateAccuracyReport(allResults, formatResults, tokenCounts)
const resultsDir = path.join(BENCHMARKS_DIR, 'results')
await ensureDir(resultsDir)
const outputFilePath = path.join(resultsDir, 'retrieval-accuracy.md')
await fsp.writeFile(outputFilePath, accuracyReport)
reportSpinner.stop('Report generation complete!')
prompts.log.info(`Report saved to: \`${path.relative(ROOT_DIR, outputFilePath)}\``)