15 KiB
Benchmarks test LLM comprehension across different input formats using 209 data retrieval questions on 4 models.
Show Dataset Catalog
Dataset Catalog
| Dataset | Rows | Structure | CSV Support | Eligibility |
|---|---|---|---|---|
| Uniform employee records | 100 | uniform | ✓ | 100% |
| E-commerce orders with nested structures | 50 | nested | ✗ | 33% |
| Time-series analytics data | 60 | uniform | ✓ | 100% |
| Top 100 GitHub repositories | 100 | uniform | ✓ | 100% |
| Semi-uniform event logs | 75 | semi-uniform | ✗ | 50% |
| Deeply nested configuration | 11 | deep | ✗ | 0% |
| Valid complete dataset (control) | 20 | uniform | ✓ | 100% |
| Array truncated: 3 rows removed from end | 17 | uniform | ✓ | 100% |
| Extra rows added beyond declared length | 23 | uniform | ✓ | 100% |
| Inconsistent field count (missing salary in row 10) | 20 | uniform | ✓ | 100% |
| Missing required fields (no email in multiple rows) | 20 | uniform | ✓ | 100% |
Structure classes:
- uniform: All objects have identical fields with primitive values
- semi-uniform: Mix of uniform and non-uniform structures
- nested: Objects with nested structures (nested objects or arrays)
- deep: Highly nested with minimal tabular eligibility
CSV Support: ✓ (supported), ✗ (not supported – would require lossy flattening)
Eligibility: Percentage of arrays that qualify for TOON's tabular format (uniform objects with primitive values)
Efficiency Ranking (Accuracy per 1K Tokens)
Each format's overall performance, balancing accuracy against token cost:
TOON ████████████████████ 26.9 │ 73.9% acc │ 2,744 tokens
JSON compact █████████████████░░░ 22.9 │ 70.7% acc │ 3,081 tokens
YAML ██████████████░░░░░░ 18.6 │ 69.0% acc │ 3,719 tokens
JSON ███████████░░░░░░░░░ 15.3 │ 69.7% acc │ 4,545 tokens
XML ██████████░░░░░░░░░░ 13.0 │ 67.1% acc │ 5,167 tokens
TOON achieves 73.9% accuracy (vs JSON's 69.7%) while using 39.6% fewer tokens.
Note on CSV: Excluded from ranking as it only supports 109 of 209 questions (flat tabular data only). While CSV is highly token-efficient for simple tabular data, it cannot represent nested structures that other formats handle.
Per-Model Accuracy
Accuracy across 4 LLMs on 209 data retrieval questions:
claude-haiku-4-5-20251001
→ TOON ████████████░░░░░░░░ 59.8% (125/209)
JSON ███████████░░░░░░░░░ 57.4% (120/209)
YAML ███████████░░░░░░░░░ 56.0% (117/209)
XML ███████████░░░░░░░░░ 55.5% (116/209)
JSON compact ███████████░░░░░░░░░ 55.0% (115/209)
CSV ██████████░░░░░░░░░░ 50.5% (55/109)
gemini-2.5-flash
→ TOON ██████████████████░░ 87.6% (183/209)
CSV █████████████████░░░ 86.2% (94/109)
JSON compact ████████████████░░░░ 82.3% (172/209)
YAML ████████████████░░░░ 79.4% (166/209)
XML ████████████████░░░░ 79.4% (166/209)
JSON ███████████████░░░░░ 77.0% (161/209)
gpt-5-nano
→ TOON ██████████████████░░ 90.9% (190/209)
JSON compact ██████████████████░░ 90.9% (190/209)
JSON ██████████████████░░ 89.0% (186/209)
CSV ██████████████████░░ 89.0% (97/109)
YAML █████████████████░░░ 87.1% (182/209)
XML ████████████████░░░░ 80.9% (169/209)
grok-4-fast-non-reasoning
→ TOON ███████████░░░░░░░░░ 57.4% (120/209)
JSON ███████████░░░░░░░░░ 55.5% (116/209)
JSON compact ███████████░░░░░░░░░ 54.5% (114/209)
YAML ███████████░░░░░░░░░ 53.6% (112/209)
XML ███████████░░░░░░░░░ 52.6% (110/209)
CSV ██████████░░░░░░░░░░ 52.3% (57/109)
[!TIP] Results Summary TOON achieves 73.9% accuracy (vs JSON's 69.7%) while using 39.6% fewer tokens on these datasets.
Performance by dataset, model, and question type
Performance by Question Type
| Question Type | TOON | JSON compact | JSON | CSV | YAML | XML |
|---|---|---|---|---|---|---|
| Field Retrieval | 99.6% | 99.3% | 99.3% | 100.0% | 98.2% | 98.9% |
| Aggregation | 54.4% | 47.2% | 48.8% | 44.0% | 47.6% | 41.3% |
| Filtering | 56.3% | 57.3% | 50.5% | 49.1% | 51.0% | 47.9% |
| Structure Awareness | 88.0% | 83.0% | 83.0% | 85.9% | 80.0% | 80.0% |
| Structural Validation | 70.0% | 45.0% | 50.0% | 80.0% | 60.0% | 80.0% |
Performance by Dataset
Uniform employee records
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
72.0% | 2,352 | 118/164 |
toon |
73.8% | 2,518 | 121/164 |
json-compact |
69.5% | 3,953 | 114/164 |
yaml |
68.3% | 4,982 | 112/164 |
json-pretty |
68.3% | 6,360 | 112/164 |
xml |
69.5% | 7,324 | 114/164 |
E-commerce orders with nested structures
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
81.1% | 7,232 | 133/164 |
json-compact |
76.8% | 6,794 | 126/164 |
yaml |
75.6% | 8,347 | 124/164 |
json-pretty |
76.2% | 10,713 | 125/164 |
xml |
74.4% | 12,023 | 122/164 |
Time-series analytics data
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
73.3% | 1,406 | 88/120 |
toon |
72.5% | 1,548 | 87/120 |
json-compact |
71.7% | 2,349 | 86/120 |
yaml |
71.7% | 2,949 | 86/120 |
json-pretty |
68.3% | 3,676 | 82/120 |
xml |
68.3% | 4,384 | 82/120 |
Top 100 GitHub repositories
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
62.9% | 8,779 | 83/132 |
csv |
61.4% | 8,527 | 81/132 |
yaml |
59.8% | 13,141 | 79/132 |
json-compact |
55.3% | 11,464 | 73/132 |
json-pretty |
56.1% | 15,157 | 74/132 |
xml |
48.5% | 17,105 | 64/132 |
Semi-uniform event logs
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
json-compact |
63.3% | 4,819 | 76/120 |
toon |
57.5% | 5,799 | 69/120 |
json-pretty |
59.2% | 6,797 | 71/120 |
yaml |
48.3% | 5,827 | 58/120 |
xml |
46.7% | 7,709 | 56/120 |
Deeply nested configuration
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
json-compact |
92.2% | 574 | 107/116 |
toon |
95.7% | 666 | 111/116 |
yaml |
91.4% | 686 | 106/116 |
json-pretty |
94.0% | 932 | 109/116 |
xml |
92.2% | 1,018 | 107/116 |
Valid complete dataset (control)
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
toon |
100.0% | 544 | 4/4 |
json-compact |
100.0% | 795 | 4/4 |
yaml |
100.0% | 1,003 | 4/4 |
json-pretty |
100.0% | 1,282 | 4/4 |
csv |
25.0% | 492 | 1/4 |
xml |
0.0% | 1,467 | 0/4 |
Array truncated: 3 rows removed from end
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
100.0% | 425 | 4/4 |
xml |
100.0% | 1,251 | 4/4 |
toon |
0.0% | 474 | 0/4 |
json-compact |
0.0% | 681 | 0/4 |
json-pretty |
0.0% | 1,096 | 0/4 |
yaml |
0.0% | 859 | 0/4 |
Extra rows added beyond declared length
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
100.0% | 566 | 4/4 |
toon |
75.0% | 621 | 3/4 |
xml |
100.0% | 1,692 | 4/4 |
yaml |
75.0% | 1,157 | 3/4 |
json-compact |
50.0% | 917 | 2/4 |
json-pretty |
50.0% | 1,476 | 2/4 |
Inconsistent field count (missing salary in row 10)
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
75.0% | 489 | 3/4 |
yaml |
100.0% | 996 | 4/4 |
toon |
100.0% | 1,019 | 4/4 |
json-compact |
75.0% | 790 | 3/4 |
xml |
100.0% | 1,458 | 4/4 |
json-pretty |
75.0% | 1,274 | 3/4 |
Missing required fields (no email in multiple rows)
| Format | Accuracy | Tokens | Correct/Total |
|---|---|---|---|
csv |
100.0% | 329 | 4/4 |
xml |
100.0% | 1,411 | 4/4 |
toon |
75.0% | 983 | 3/4 |
yaml |
25.0% | 960 | 1/4 |
json-pretty |
25.0% | 1,230 | 1/4 |
json-compact |
0.0% | 755 | 0/4 |
Performance by Model
claude-haiku-4-5-20251001
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
59.8% | 125/209 |
json-pretty |
57.4% | 120/209 |
yaml |
56.0% | 117/209 |
xml |
55.5% | 116/209 |
json-compact |
55.0% | 115/209 |
csv |
50.5% | 55/109 |
gemini-2.5-flash
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
87.6% | 183/209 |
csv |
86.2% | 94/109 |
json-compact |
82.3% | 172/209 |
yaml |
79.4% | 166/209 |
xml |
79.4% | 166/209 |
json-pretty |
77.0% | 161/209 |
gpt-5-nano
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
90.9% | 190/209 |
json-compact |
90.9% | 190/209 |
json-pretty |
89.0% | 186/209 |
csv |
89.0% | 97/109 |
yaml |
87.1% | 182/209 |
xml |
80.9% | 169/209 |
grok-4-fast-non-reasoning
| Format | Accuracy | Correct/Total |
|---|---|---|
toon |
57.4% | 120/209 |
json-pretty |
55.5% | 116/209 |
json-compact |
54.5% | 114/209 |
yaml |
53.6% | 112/209 |
xml |
52.6% | 110/209 |
csv |
52.3% | 57/109 |
What's Being Measured
This benchmark tests LLM comprehension and data retrieval accuracy across different input formats. Each LLM receives formatted data and must answer questions about it. This does not test the model's ability to generate TOON output – only to read and understand it.
Datasets Tested
Eleven datasets designed to test different structural patterns and validation capabilities:
Primary datasets:
- Tabular (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
- Nested (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
- Analytics (60 days of metrics): Time-series data with dates and numeric values.
- GitHub (100 repositories): Real-world data from top GitHub repos by stars.
- Event Logs (75 logs): Semi-uniform data with ~50% flat logs and ~50% with nested error objects.
- Nested Config (1 configuration): Deeply nested configuration with minimal tabular eligibility.
Structural validation datasets:
- Control: Valid complete dataset (baseline for validation)
- Truncated: Array with 3 rows removed from end (tests
[N]length detection) - Extra rows: Array with 3 additional rows beyond declared length
- Width mismatch: Inconsistent field count (missing salary in row 10)
- Missing fields: Systematic field omissions (no email in multiple rows)
Question Types
209 questions are generated dynamically across five categories:
-
Field retrieval (33%): Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)
- Example: "What is Alice's salary?" →
75000 - Example: "How many items are in order ORD-0042?" →
3 - Example: "What is the customer name for order ORD-0042?" →
John Doe
- Example: "What is Alice's salary?" →
-
Aggregation (30%): Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)
- Example: "How many employees work in Engineering?" →
17 - Example: "What is the total revenue across all orders?" →
45123.50 - Example: "How many employees have salary > 80000?" →
23
- Example: "How many employees work in Engineering?" →
-
Filtering (23%): Multi-condition queries requiring compound logic (AND constraints across fields)
- Example: "How many employees in Sales have salary > 80000?" →
5 - Example: "How many active employees have more than 10 years of experience?" →
8
- Example: "How many employees in Sales have salary > 80000?" →
-
Structure awareness (12%): Tests format-native structural affordances (TOON's
[N]count and{fields}, CSV's header row)- Example: "How many employees are in the dataset?" →
100 - Example: "List the field names for employees" →
id, name, email, department, salary, yearsExperience, active - Example: "What is the department of the last employee?" →
Sales
- Example: "How many employees are in the dataset?" →
-
Structural validation (2%): Tests ability to detect incomplete, truncated, or corrupted data using structural metadata
- Example: "Is this data complete and valid?" →
YES(control dataset) orNO(corrupted datasets) - Tests TOON's
[N]length validation and{fields}consistency checking - Demonstrates CSV's lack of structural validation capabilities
- Example: "Is this data complete and valid?" →
Evaluation Process
- Format conversion: Each dataset is converted to all 6 formats (TOON, JSON compact, JSON, CSV, YAML, XML).
- Query LLM: Each model receives formatted data + question in a prompt and extracts the answer.
- Validate deterministically: Answers are validated using type-aware comparison (e.g.,
50000=$50,000,Engineering=engineering,2025-01-01=January 1, 2025) without requiring an LLM judge.
Models & Configuration
- Models tested:
claude-haiku-4-5-20251001,gemini-2.5-flash,gpt-5-nano,grok-4-fast-non-reasoning - Token counting: Using
gpt-tokenizerwitho200k_baseencoding (GPT-5 tokenizer) - Temperature: Not set (models use their defaults)
- Total evaluations: 209 questions × 6 formats × 4 models = 5,016 LLM calls