Benchmarks test LLM comprehension across different input formats using 209 data retrieval questions on 4 models.
Show Dataset Catalog #### Dataset Catalog | Dataset | Rows | Structure | CSV Support | Eligibility | | ------- | ---- | --------- | ----------- | ----------- | | Uniform employee records | 100 | uniform | ✓ | 100% | | E-commerce orders with nested structures | 50 | nested | ✗ | 33% | | Time-series analytics data | 60 | uniform | ✓ | 100% | | Top 100 GitHub repositories | 100 | uniform | ✓ | 100% | | Semi-uniform event logs | 75 | semi-uniform | ✗ | 50% | | Deeply nested configuration | 11 | deep | ✗ | 0% | | Valid complete dataset (control) | 20 | uniform | ✓ | 100% | | Array truncated: 3 rows removed from end | 17 | uniform | ✓ | 100% | | Extra rows added beyond declared length | 23 | uniform | ✓ | 100% | | Inconsistent field count (missing salary in row 10) | 20 | uniform | ✓ | 100% | | Missing required fields (no email in multiple rows) | 20 | uniform | ✓ | 100% | **Structure classes:** - **uniform**: All objects have identical fields with primitive values - **semi-uniform**: Mix of uniform and non-uniform structures - **nested**: Objects with nested structures (nested objects or arrays) - **deep**: Highly nested with minimal tabular eligibility **CSV Support:** ✓ (supported), ✗ (not supported – would require lossy flattening) **Eligibility:** Percentage of arrays that qualify for TOON's tabular format (uniform objects with primitive values)
#### Efficiency Ranking (Accuracy per 1K Tokens) Each format ranked by efficiency (accuracy percentage per 1,000 tokens): ``` TOON ████████████████████ 26.9 acc%/1K tok │ 73.9% acc │ 2,744 tokens JSON compact █████████████████░░░ 22.9 acc%/1K tok │ 70.7% acc │ 3,081 tokens YAML ██████████████░░░░░░ 18.6 acc%/1K tok │ 69.0% acc │ 3,719 tokens JSON ███████████░░░░░░░░░ 15.3 acc%/1K tok │ 69.7% acc │ 4,545 tokens XML ██████████░░░░░░░░░░ 13.0 acc%/1K tok │ 67.1% acc │ 5,167 tokens ``` *Efficiency score = (Accuracy % ÷ Tokens) × 1,000. Higher is better.* > [!TIP] > TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.6% fewer tokens**. **Note on CSV:** Excluded from ranking as it only supports 109 of 209 questions (flat tabular data only). While CSV is highly token-efficient for simple tabular data, it cannot represent nested structures that other formats handle. #### Per-Model Accuracy Accuracy across 4 LLMs on 209 data retrieval questions: ``` claude-haiku-4-5-20251001 → TOON ████████████░░░░░░░░ 59.8% (125/209) JSON ███████████░░░░░░░░░ 57.4% (120/209) YAML ███████████░░░░░░░░░ 56.0% (117/209) XML ███████████░░░░░░░░░ 55.5% (116/209) JSON compact ███████████░░░░░░░░░ 55.0% (115/209) CSV ██████████░░░░░░░░░░ 50.5% (55/109) gemini-2.5-flash → TOON ██████████████████░░ 87.6% (183/209) CSV █████████████████░░░ 86.2% (94/109) JSON compact ████████████████░░░░ 82.3% (172/209) YAML ████████████████░░░░ 79.4% (166/209) XML ████████████████░░░░ 79.4% (166/209) JSON ███████████████░░░░░ 77.0% (161/209) gpt-5-nano → TOON ██████████████████░░ 90.9% (190/209) JSON compact ██████████████████░░ 90.9% (190/209) JSON ██████████████████░░ 89.0% (186/209) CSV ██████████████████░░ 89.0% (97/109) YAML █████████████████░░░ 87.1% (182/209) XML ████████████████░░░░ 80.9% (169/209) grok-4-fast-non-reasoning → TOON ███████████░░░░░░░░░ 57.4% (120/209) JSON ███████████░░░░░░░░░ 55.5% (116/209) JSON compact ███████████░░░░░░░░░ 54.5% (114/209) YAML ███████████░░░░░░░░░ 53.6% (112/209) XML ███████████░░░░░░░░░ 52.6% (110/209) CSV ██████████░░░░░░░░░░ 52.3% (57/109) ``` > [!TIP] > TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.6% fewer tokens** on these datasets.
Performance by dataset, model, and question type #### Performance by Question Type | Question Type | TOON | JSON compact | JSON | CSV | YAML | XML | | ------------- | ---- | ---- | ---- | ---- | ---- | ---- | | Field Retrieval | 99.6% | 99.3% | 99.3% | 100.0% | 98.2% | 98.9% | | Aggregation | 54.4% | 47.2% | 48.8% | 44.0% | 47.6% | 41.3% | | Filtering | 56.3% | 57.3% | 50.5% | 49.1% | 51.0% | 47.9% | | Structure Awareness | 88.0% | 83.0% | 83.0% | 85.9% | 80.0% | 80.0% | | Structural Validation | 70.0% | 45.0% | 50.0% | 80.0% | 60.0% | 80.0% | #### Performance by Dataset ##### Uniform employee records | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 72.0% | 2,352 | 118/164 | | `toon` | 73.8% | 2,518 | 121/164 | | `json-compact` | 69.5% | 3,953 | 114/164 | | `yaml` | 68.3% | 4,982 | 112/164 | | `json-pretty` | 68.3% | 6,360 | 112/164 | | `xml` | 69.5% | 7,324 | 114/164 | ##### E-commerce orders with nested structures | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 81.1% | 7,232 | 133/164 | | `json-compact` | 76.8% | 6,794 | 126/164 | | `yaml` | 75.6% | 8,347 | 124/164 | | `json-pretty` | 76.2% | 10,713 | 125/164 | | `xml` | 74.4% | 12,023 | 122/164 | ##### Time-series analytics data | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 73.3% | 1,406 | 88/120 | | `toon` | 72.5% | 1,548 | 87/120 | | `json-compact` | 71.7% | 2,349 | 86/120 | | `yaml` | 71.7% | 2,949 | 86/120 | | `json-pretty` | 68.3% | 3,676 | 82/120 | | `xml` | 68.3% | 4,384 | 82/120 | ##### Top 100 GitHub repositories | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 62.9% | 8,779 | 83/132 | | `csv` | 61.4% | 8,527 | 81/132 | | `yaml` | 59.8% | 13,141 | 79/132 | | `json-compact` | 55.3% | 11,464 | 73/132 | | `json-pretty` | 56.1% | 15,157 | 74/132 | | `xml` | 48.5% | 17,105 | 64/132 | ##### Semi-uniform event logs | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 63.3% | 4,819 | 76/120 | | `toon` | 57.5% | 5,799 | 69/120 | | `json-pretty` | 59.2% | 6,797 | 71/120 | | `yaml` | 48.3% | 5,827 | 58/120 | | `xml` | 46.7% | 7,709 | 56/120 | ##### Deeply nested configuration | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 92.2% | 574 | 107/116 | | `toon` | 95.7% | 666 | 111/116 | | `yaml` | 91.4% | 686 | 106/116 | | `json-pretty` | 94.0% | 932 | 109/116 | | `xml` | 92.2% | 1,018 | 107/116 | ##### Valid complete dataset (control) | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 100.0% | 544 | 4/4 | | `json-compact` | 100.0% | 795 | 4/4 | | `yaml` | 100.0% | 1,003 | 4/4 | | `json-pretty` | 100.0% | 1,282 | 4/4 | | `csv` | 25.0% | 492 | 1/4 | | `xml` | 0.0% | 1,467 | 0/4 | ##### Array truncated: 3 rows removed from end | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 100.0% | 425 | 4/4 | | `xml` | 100.0% | 1,251 | 4/4 | | `toon` | 0.0% | 474 | 0/4 | | `json-compact` | 0.0% | 681 | 0/4 | | `json-pretty` | 0.0% | 1,096 | 0/4 | | `yaml` | 0.0% | 859 | 0/4 | ##### Extra rows added beyond declared length | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 100.0% | 566 | 4/4 | | `toon` | 75.0% | 621 | 3/4 | | `xml` | 100.0% | 1,692 | 4/4 | | `yaml` | 75.0% | 1,157 | 3/4 | | `json-compact` | 50.0% | 917 | 2/4 | | `json-pretty` | 50.0% | 1,476 | 2/4 | ##### Inconsistent field count (missing salary in row 10) | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 75.0% | 489 | 3/4 | | `yaml` | 100.0% | 996 | 4/4 | | `toon` | 100.0% | 1,019 | 4/4 | | `json-compact` | 75.0% | 790 | 3/4 | | `xml` | 100.0% | 1,458 | 4/4 | | `json-pretty` | 75.0% | 1,274 | 3/4 | ##### Missing required fields (no email in multiple rows) | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 100.0% | 329 | 4/4 | | `xml` | 100.0% | 1,411 | 4/4 | | `toon` | 75.0% | 983 | 3/4 | | `yaml` | 25.0% | 960 | 1/4 | | `json-pretty` | 25.0% | 1,230 | 1/4 | | `json-compact` | 0.0% | 755 | 0/4 | #### Performance by Model ##### claude-haiku-4-5-20251001 | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 59.8% | 125/209 | | `json-pretty` | 57.4% | 120/209 | | `yaml` | 56.0% | 117/209 | | `xml` | 55.5% | 116/209 | | `json-compact` | 55.0% | 115/209 | | `csv` | 50.5% | 55/109 | ##### gemini-2.5-flash | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 87.6% | 183/209 | | `csv` | 86.2% | 94/109 | | `json-compact` | 82.3% | 172/209 | | `yaml` | 79.4% | 166/209 | | `xml` | 79.4% | 166/209 | | `json-pretty` | 77.0% | 161/209 | ##### gpt-5-nano | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 90.9% | 190/209 | | `json-compact` | 90.9% | 190/209 | | `json-pretty` | 89.0% | 186/209 | | `csv` | 89.0% | 97/109 | | `yaml` | 87.1% | 182/209 | | `xml` | 80.9% | 169/209 | ##### grok-4-fast-non-reasoning | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 57.4% | 120/209 | | `json-pretty` | 55.5% | 116/209 | | `json-compact` | 54.5% | 114/209 | | `yaml` | 53.6% | 112/209 | | `xml` | 52.6% | 110/209 | | `csv` | 52.3% | 57/109 |
#### What's Being Measured This benchmark tests **LLM comprehension and data retrieval accuracy** across different input formats. Each LLM receives formatted data and must answer questions about it. This does **not** test the model's ability to generate TOON output – only to read and understand it. #### Datasets Tested Eleven datasets designed to test different structural patterns and validation capabilities: **Primary datasets:** 1. **Tabular** (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format. 2. **Nested** (50 e-commerce orders): Complex structures with nested customer objects and item arrays. 3. **Analytics** (60 days of metrics): Time-series data with dates and numeric values. 4. **GitHub** (100 repositories): Real-world data from top GitHub repos by stars. 5. **Event Logs** (75 logs): Semi-uniform data with ~50% flat logs and ~50% with nested error objects. 6. **Nested Config** (1 configuration): Deeply nested configuration with minimal tabular eligibility. **Structural validation datasets:** 7. **Control**: Valid complete dataset (baseline for validation) 8. **Truncated**: Array with 3 rows removed from end (tests `[N]` length detection) 9. **Extra rows**: Array with 3 additional rows beyond declared length 10. **Width mismatch**: Inconsistent field count (missing salary in row 10) 11. **Missing fields**: Systematic field omissions (no email in multiple rows) #### Question Types 209 questions are generated dynamically across five categories: - **Field retrieval (33%)**: Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths) - Example: "What is Alice's salary?" → `75000` - Example: "How many items are in order ORD-0042?" → `3` - Example: "What is the customer name for order ORD-0042?" → `John Doe` - **Aggregation (30%)**: Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons) - Example: "How many employees work in Engineering?" → `17` - Example: "What is the total revenue across all orders?" → `45123.50` - Example: "How many employees have salary > 80000?" → `23` - **Filtering (23%)**: Multi-condition queries requiring compound logic (AND constraints across fields) - Example: "How many employees in Sales have salary > 80000?" → `5` - Example: "How many active employees have more than 10 years of experience?" → `8` - **Structure awareness (12%)**: Tests format-native structural affordances (TOON's `[N]` count and `{fields}`, CSV's header row) - Example: "How many employees are in the dataset?" → `100` - Example: "List the field names for employees" → `id, name, email, department, salary, yearsExperience, active` - Example: "What is the department of the last employee?" → `Sales` - **Structural validation (2%)**: Tests ability to detect incomplete, truncated, or corrupted data using structural metadata - Example: "Is this data complete and valid?" → `YES` (control dataset) or `NO` (corrupted datasets) - Tests TOON's `[N]` length validation and `{fields}` consistency checking - Demonstrates CSV's lack of structural validation capabilities #### Evaluation Process 1. **Format conversion**: Each dataset is converted to all 6 formats (TOON, JSON compact, JSON, CSV, YAML, XML). 2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer. 3. **Validate deterministically**: Answers are validated using type-aware comparison (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`) without requiring an LLM judge. #### Models & Configuration - **Models tested**: `claude-haiku-4-5-20251001`, `gemini-2.5-flash`, `gpt-5-nano`, `grok-4-fast-non-reasoning` - **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding (GPT-5 tokenizer) - **Temperature**: Not set (models use their defaults) - **Total evaluations**: 209 questions × 6 formats × 4 models = 5,016 LLM calls