### Retrieval Accuracy Tested across **2 LLMs** with data retrieval tasks: ``` gpt-4o-mini ██████████████░░░░░░ 72.3% accuracy claude-haiku-4-5 ███████████████░░░░░ 76.7% accuracy ``` **TOON achieves 73.9% accuracy (vs JSON's 73.6%) while using 46.3% fewer tokens.** | Format | Accuracy | Average Tokens | | ------ | -------- | -------------- | | `toon` | 73.9% | 4.678 | | `json` | 73.6% | 8.713 | | `markdown-kv` | 73.6% | 8.649 | | `csv` | 72.3% | 4.745 | | `yaml` | 71.7% | 7.091 |
View detailed breakdown by dataset and model #### Performance by Dataset ##### Uniform employee records (TOON optimal format) | Format | Accuracy | Tokens | Correct/Total | |--------|----------|--------|---------------| | `toon` | 72.4% | 2.483 | 84/116 | | `csv` | 69.0% | 2.337 | 80/116 | | `yaml` | 68.1% | 4.969 | 79/116 | | `markdown-kv` | 68.1% | 6.270 | 79/116 | | `json` | 68.1% | 6.347 | 79/116 | ##### E-commerce orders with nested structures | Format | Accuracy | Tokens | Correct/Total | |--------|----------|--------|---------------| | `toon` | 84.1% | 5.967 | 74/88 | | `csv` | 83.0% | 6.735 | 73/88 | | `yaml` | 81.8% | 7.328 | 72/88 | | `markdown-kv` | 86.4% | 9.110 | 76/88 | | `json` | 84.1% | 9.694 | 74/88 | ##### Time-series analytics data | Format | Accuracy | Tokens | Correct/Total | |--------|----------|--------|---------------| | `csv` | 72.4% | 1.393 | 42/58 | | `toon` | 70.7% | 1.515 | 41/58 | | `yaml` | 72.4% | 2.938 | 42/58 | | `json` | 74.1% | 3.665 | 43/58 | | `markdown-kv` | 70.7% | 3.779 | 41/58 | ##### Popular GitHub repositories | Format | Accuracy | Tokens | Correct/Total | |--------|----------|--------|---------------| | `toon` | 64.3% | 8.745 | 36/56 | | `csv` | 62.5% | 8.513 | 35/56 | | `json` | 67.9% | 15.145 | 38/56 | | `markdown-kv` | 67.9% | 15.436 | 38/56 | | `yaml` | 62.5% | 13.129 | 35/56 | #### Performance by Model ##### gpt-4o-mini | Format | Accuracy | Correct/Total | |--------|----------|---------------| | `toon` | 72.3% | 115/159 | | `json` | 71.7% | 114/159 | | `markdown-kv` | 70.4% | 112/159 | | `csv` | 69.2% | 110/159 | | `yaml` | 68.6% | 109/159 | ##### claude-haiku-4-5 | Format | Accuracy | Correct/Total | |--------|----------|---------------| | `markdown-kv` | 76.7% | 122/159 | | `toon` | 75.5% | 120/159 | | `json` | 75.5% | 120/159 | | `csv` | 75.5% | 120/159 | | `yaml` | 74.8% | 119/159 | #### Methodology - **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching). - **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding. - **Question types**: Field retrieval, aggregation, and filtering tasks. - **Real data**: Faker.js-generated datasets + GitHub repositories.