Benchmarks test LLM comprehension across different input formats using 154 data retrieval questions on 4 models. #### Efficiency Ranking (Accuracy per 1K Tokens) Each format's overall performance, balancing accuracy against token cost: ``` toon ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 15.0 │ 70.1% acc │ 4,678 tokens csv ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░ 14.3 │ 67.7% acc │ 4,745 tokens json-compact ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░ 11.0 │ 65.3% acc │ 5,925 tokens yaml ▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░░ 9.4 │ 66.7% acc │ 7,091 tokens json-pretty ▓▓▓▓▓▓▓▓▓▓░░░░░░░░░░ 7.5 │ 65.4% acc │ 8,713 tokens xml ▓▓▓▓▓▓▓▓▓░░░░░░░░░░░ 6.8 │ 67.2% acc │ 9,944 tokens ``` TOON achieves **70.1%** accuracy (vs JSON's 65.4%) while using **46.3% fewer tokens**. #### Per-Model Accuracy Accuracy across **4 LLMs** on 154 data retrieval questions: ``` gpt-5-nano → TOON ███████████████████░ 96.1% (148/154) CSV ██████████████████░░ 91.6% (141/154) YAML ██████████████████░░ 91.6% (141/154) JSON compact ██████████████████░░ 91.6% (141/154) XML █████████████████░░░ 87.0% (134/154) JSON █████████████████░░░ 86.4% (133/154) claude-haiku-4-5-20251001 JSON ██████████░░░░░░░░░░ 50.0% (77/154) YAML ██████████░░░░░░░░░░ 49.4% (76/154) → TOON ██████████░░░░░░░░░░ 48.7% (75/154) XML ██████████░░░░░░░░░░ 48.1% (74/154) CSV █████████░░░░░░░░░░░ 47.4% (73/154) JSON compact █████████░░░░░░░░░░░ 44.2% (68/154) gemini-2.5-flash CSV ██████████████████░░ 87.7% (135/154) XML ██████████████████░░ 87.7% (135/154) → TOON █████████████████░░░ 86.4% (133/154) YAML ████████████████░░░░ 79.9% (123/154) JSON compact ████████████████░░░░ 79.9% (123/154) JSON ███████████████░░░░░ 76.6% (118/154) grok-4-fast-non-reasoning → TOON ██████████░░░░░░░░░░ 49.4% (76/154) JSON ██████████░░░░░░░░░░ 48.7% (75/154) XML █████████░░░░░░░░░░░ 46.1% (71/154) YAML █████████░░░░░░░░░░░ 46.1% (71/154) JSON compact █████████░░░░░░░░░░░ 45.5% (70/154) CSV █████████░░░░░░░░░░░ 44.2% (68/154) ``` **Key tradeoff:** TOON achieves **70.1% accuracy** (vs JSON's 65.4%) while using **46.3% fewer tokens** on these datasets.
Performance by dataset and model #### Performance by Dataset ##### Uniform employee records (TOON optimal format) | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 65.5% | 2,337 | 131/200 | | `toon` | 67.5% | 2,483 | 135/200 | | `json-compact` | 65.5% | 3,943 | 131/200 | | `yaml` | 68.5% | 4,969 | 137/200 | | `xml` | 69.5% | 7,314 | 139/200 | | `json-pretty` | 64.5% | 6,347 | 129/200 | ##### E-commerce orders with nested structures | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 78.8% | 5,967 | 126/160 | | `csv` | 76.3% | 6,735 | 122/160 | | `json-compact` | 70.6% | 5,962 | 113/160 | | `yaml` | 72.5% | 7,328 | 116/160 | | `json-pretty` | 76.9% | 9,694 | 123/160 | | `xml` | 73.1% | 10,992 | 117/160 | ##### Time-series analytics data | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 68.4% | 1,515 | 93/136 | | `csv` | 65.4% | 1,393 | 89/136 | | `json-compact` | 64.7% | 2,341 | 88/136 | | `yaml` | 66.2% | 2,938 | 90/136 | | `json-pretty` | 64.7% | 3,665 | 88/136 | | `xml` | 66.9% | 4,376 | 91/136 | ##### Top 100 GitHub repositories | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 65.0% | 8,745 | 78/120 | | `csv` | 62.5% | 8,513 | 75/120 | | `json-compact` | 58.3% | 11,455 | 70/120 | | `yaml` | 56.7% | 13,129 | 68/120 | | `xml` | 55.8% | 17,095 | 67/120 | | `json-pretty` | 52.5% | 15,145 | 63/120 | #### Performance by Model ##### gpt-5-nano | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 96.1% | 148/154 | | `csv` | 91.6% | 141/154 | | `yaml` | 91.6% | 141/154 | | `json-compact` | 91.6% | 141/154 | | `xml` | 87.0% | 134/154 | | `json-pretty` | 86.4% | 133/154 | ##### claude-haiku-4-5-20251001 | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `json-pretty` | 50.0% | 77/154 | | `yaml` | 49.4% | 76/154 | | `toon` | 48.7% | 75/154 | | `xml` | 48.1% | 74/154 | | `csv` | 47.4% | 73/154 | | `json-compact` | 44.2% | 68/154 | ##### gemini-2.5-flash | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `csv` | 87.7% | 135/154 | | `xml` | 87.7% | 135/154 | | `toon` | 86.4% | 133/154 | | `yaml` | 79.9% | 123/154 | | `json-compact` | 79.9% | 123/154 | | `json-pretty` | 76.6% | 118/154 | ##### grok-4-fast-non-reasoning | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 49.4% | 76/154 | | `json-pretty` | 48.7% | 75/154 | | `xml` | 46.1% | 71/154 | | `yaml` | 46.1% | 71/154 | | `json-compact` | 45.5% | 70/154 | | `csv` | 44.2% | 68/154 |
How the benchmark works #### What's Being Measured This benchmark tests **LLM comprehension and data retrieval accuracy** across different input formats. Each LLM receives formatted data and must answer questions about it (this does **not** test model's ability to generate TOON output). #### Datasets Tested Four datasets designed to test different structural patterns (all contain arrays of uniform objects, TOON's optimal format): 1. **Tabular** (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format. 2. **Nested** (50 e-commerce orders): Complex structures with nested customer objects and item arrays. 3. **Analytics** (60 days of metrics): Time-series data with dates and numeric values. 4. **GitHub** (100 repositories): Real-world data from top GitHub repos by stars. #### Question Types 154 questions are generated dynamically across three categories: - **Field retrieval (40%)**: Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths) - Example: "What is Alice's salary?" → `75000` - Example: "How many items are in order ORD-0042?" → `3` - Example: "What is the customer name for order ORD-0042?" → `John Doe` - **Aggregation (32%)**: Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons) - Example: "How many employees work in Engineering?" → `17` - Example: "What is the total revenue across all orders?" → `45123.50` - Example: "How many employees have salary > 80000?" → `23` - **Filtering (28%)**: Multi-condition queries requiring compound logic (AND constraints across fields) - Example: "How many employees in Sales have salary > 80000?" → `5` - Example: "How many active employees have more than 10 years of experience?" → `8` #### Evaluation Process 1. **Format conversion**: Each dataset is converted to all 6 formats (TOON, CSV, XML, YAML, JSON, JSON compact). 2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer. 3. **Validate with LLM-as-judge**: `gpt-5-nano` validates if the answer is semantically correct (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`). #### Models & Configuration - **Models tested**: `gpt-5-nano`, `claude-haiku-4-5-20251001`, `gemini-2.5-flash`, `grok-4-fast-non-reasoning` - **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding (GPT-5 tokenizer) - **Temperature**: Not set (models use their defaults) - **Total evaluations**: 154 questions × 6 formats × 4 models = 3,696 LLM calls