### Retrieval Accuracy Tested across **2 LLMs** with data retrieval tasks: ``` gpt-5-nano toon ███████████████████░ 97.5% (155/159) markdown-kv ███████████████████░ 95.6% (152/159) yaml ███████████████████░ 94.3% (150/159) json ███████████████████░ 93.7% (149/159) csv ███████████████████░ 93.7% (149/159) claude-haiku-4-5 markdown-kv ███████████████░░░░░ 76.7% (122/159) toon ███████████████░░░░░ 75.5% (120/159) json ███████████████░░░░░ 75.5% (120/159) csv ███████████████░░░░░ 75.5% (120/159) yaml ███████████████░░░░░ 74.8% (119/159) ``` **Tradeoff:** TOON achieves 86.5% accuracy (vs JSON's 84.6%) while using 46.3% fewer tokens.
View detailed breakdown by dataset and model #### Performance by Dataset ##### Uniform employee records (TOON optimal format) | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 86.2% | 2.483 | 100/116 | | `csv` | 80.2% | 2.337 | 93/116 | | `yaml` | 82.8% | 4.969 | 96/116 | | `markdown-kv` | 84.5% | 6.270 | 98/116 | | `json` | 84.5% | 6.347 | 98/116 | ##### E-commerce orders with nested structures | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `toon` | 90.9% | 5.967 | 80/88 | | `csv` | 90.9% | 6.735 | 80/88 | | `yaml` | 89.8% | 7.328 | 79/88 | | `markdown-kv` | 90.9% | 9.110 | 80/88 | | `json` | 89.8% | 9.694 | 79/88 | ##### Time-series analytics data | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 87.9% | 1.393 | 51/58 | | `toon` | 86.2% | 1.515 | 50/58 | | `yaml` | 86.2% | 2.938 | 50/58 | | `json` | 87.9% | 3.665 | 51/58 | | `markdown-kv` | 86.2% | 3.779 | 50/58 | ##### Top 100 GitHub repositories | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `csv` | 80.4% | 8.513 | 45/56 | | `toon` | 80.4% | 8.745 | 45/56 | | `yaml` | 78.6% | 13.129 | 44/56 | | `markdown-kv` | 82.1% | 15.436 | 46/56 | | `json` | 73.2% | 15.145 | 41/56 | #### Performance by Model ##### gpt-5-nano | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `toon` | 97.5% | 155/159 | | `markdown-kv` | 95.6% | 152/159 | | `yaml` | 94.3% | 150/159 | | `json` | 93.7% | 149/159 | | `csv` | 93.7% | 149/159 | ##### claude-haiku-4-5 | Format | Accuracy | Correct/Total | | ------ | -------- | ------------- | | `markdown-kv` | 76.7% | 122/159 | | `toon` | 75.5% | 120/159 | | `json` | 75.5% | 120/159 | | `csv` | 75.5% | 120/159 | | `yaml` | 74.8% | 119/159 | #### Methodology - **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching). - **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding. - **Question types**: Field retrieval, aggregation, and filtering tasks. - **Real data**: Faker.js-generated datasets + GitHub repositories.