mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 23:34:10 +08:00
docs: how the benchmarks work section
This commit is contained in:
@@ -189,7 +189,7 @@ ${modelBreakdown}
|
||||
${summaryComparison}
|
||||
|
||||
<details>
|
||||
<summary><strong>View detailed breakdown by dataset and model</strong></summary>
|
||||
<summary><strong>Performance by dataset and model</strong></summary>
|
||||
|
||||
#### Performance by Dataset
|
||||
|
||||
@@ -197,12 +197,61 @@ ${datasetBreakdown}
|
||||
#### Performance by Model
|
||||
|
||||
${modelPerformance}
|
||||
#### Methodology
|
||||
</details>
|
||||
|
||||
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).
|
||||
- **Token counting**: Using \`gpt-tokenizer\` with \`o200k_base\` encoding.
|
||||
- **Question types**: ~160 questions across field retrieval, aggregation, and filtering tasks.
|
||||
- **Datasets**: Faker.js-generated datasets (seeded) + GitHub repositories.
|
||||
<details>
|
||||
<summary><strong>How the benchmark works</strong></summary>
|
||||
|
||||
#### What's Being Measured
|
||||
|
||||
This benchmark tests **LLM comprehension and data retrieval accuracy** when data is presented in different formats. Each LLM receives formatted data and must answer questions about it (this does NOT test LLM's ability to generate TOON output).
|
||||
|
||||
#### Datasets Tested
|
||||
|
||||
Four datasets designed to test different structural patterns:
|
||||
|
||||
1. **Tabular** (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
|
||||
2. **Nested** (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
|
||||
3. **Analytics** (60 days of metrics): Time-series data with dates and numeric values.
|
||||
4. **GitHub** (100 repositories): Real-world data from top GitHub repos by stars.
|
||||
|
||||
#### Question Types
|
||||
|
||||
~160 questions are generated dynamically across three categories:
|
||||
|
||||
- **Field retrieval (50%)**: Direct value lookups
|
||||
- Example: "What is Alice's salary?" → \`75000\`
|
||||
- Example: "What is the customer name for order ORD-0042?" → \`John Doe\`
|
||||
|
||||
- **Aggregation (25%)**: Counting and summation tasks
|
||||
- Example: "How many employees work in Engineering?" → \`17\`
|
||||
- Example: "What is the total revenue across all orders?" → \`45123.50\`
|
||||
|
||||
- **Filtering (25%)**: Conditional queries
|
||||
- Example: "How many employees in Sales have salary > 80000?" → \`5\`
|
||||
- Example: "How many orders have total > 400?" → \`12\`
|
||||
|
||||
#### Evaluation Process
|
||||
|
||||
1. **Format conversion**: Each dataset is converted to all 5 formats (TOON, JSON, YAML, CSV, XML).
|
||||
2. **Query LLM**: Each model receives formatted data + question in a prompt.
|
||||
3. **LLM responds**: Model extracts the answer from the data.
|
||||
4. **Validate with LLM-as-judge**: GPT-5-nano validates if the answer is semantically correct.
|
||||
|
||||
#### Semantic Validation
|
||||
|
||||
Answers are validated by an LLM judge (\`gpt-5-nano\`) using semantic equivalence, not exact string matching:
|
||||
|
||||
- **Numeric formats**: \`50000\` = \`$50,000\` = \`50000 dollars\` ✓
|
||||
- **Case insensitive**: \`Engineering\` = \`engineering\` = \`ENGINEERING\` ✓
|
||||
- **Minor formatting**: \`2025-01-01\` = \`January 1, 2025\` ✓
|
||||
|
||||
#### Models & Configuration
|
||||
|
||||
- **Models tested**: \`gpt-5-nano\`, \`claude-haiku-4-5\`, \`gemini-2.5-flash\`
|
||||
- **Token counting**: Using \`gpt-tokenizer\` with \`o200k_base\` encoding (GPT-5 tokenizer)
|
||||
- **Temperature**: 0 (for non-reasoning models)
|
||||
- **Total evaluations**: 159 questions × 5 formats × 3 models = 2,385 LLM calls
|
||||
|
||||
</details>
|
||||
`.trimStart()
|
||||
|
||||
Reference in New Issue
Block a user