docs: add accuracy per 1k tokens report (closes #72)

This commit is contained in:
Johann Schopplich
2025-11-05 08:21:57 +01:00
parent 9268fdf3ef
commit af17efe128
8 changed files with 413 additions and 180 deletions

View File

@@ -1,4 +1,21 @@
### Retrieval Accuracy
Benchmarks test LLM comprehension across different input formats using 154 data retrieval questions on 4 models.
#### Efficiency Ranking (Accuracy per 1K Tokens)
Each format's overall performance, balancing accuracy against token cost:
```
toon ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 15.0 │ 70.1% acc │ 4,678 tokens
csv ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░ 14.3 │ 67.7% acc │ 4,745 tokens
json-compact ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░ 11.0 │ 65.3% acc │ 5,925 tokens
yaml ▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░░ 9.4 │ 66.7% acc │ 7,091 tokens
json-pretty ▓▓▓▓▓▓▓▓▓▓░░░░░░░░░░ 7.5 │ 65.4% acc │ 8,713 tokens
xml ▓▓▓▓▓▓▓▓▓░░░░░░░░░░░ 6.8 │ 67.2% acc │ 9,944 tokens
```
TOON achieves **70.1%** accuracy (vs JSON's 65.4%) while using **46.3% fewer tokens**.
#### Per-Model Accuracy
Accuracy across **4 LLMs** on 154 data retrieval questions: