mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 15:24:10 +08:00
docs: add accuracy per 1k tokens report (closes #72)
This commit is contained in:
@@ -1,4 +1,21 @@
|
||||
### Retrieval Accuracy
|
||||
Benchmarks test LLM comprehension across different input formats using 154 data retrieval questions on 4 models.
|
||||
|
||||
#### Efficiency Ranking (Accuracy per 1K Tokens)
|
||||
|
||||
Each format's overall performance, balancing accuracy against token cost:
|
||||
|
||||
```
|
||||
toon ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 15.0 │ 70.1% acc │ 4,678 tokens
|
||||
csv ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░ 14.3 │ 67.7% acc │ 4,745 tokens
|
||||
json-compact ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░ 11.0 │ 65.3% acc │ 5,925 tokens
|
||||
yaml ▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░░ 9.4 │ 66.7% acc │ 7,091 tokens
|
||||
json-pretty ▓▓▓▓▓▓▓▓▓▓░░░░░░░░░░ 7.5 │ 65.4% acc │ 8,713 tokens
|
||||
xml ▓▓▓▓▓▓▓▓▓░░░░░░░░░░░ 6.8 │ 67.2% acc │ 9,944 tokens
|
||||
```
|
||||
|
||||
TOON achieves **70.1%** accuracy (vs JSON's 65.4%) while using **46.3% fewer tokens**.
|
||||
|
||||
#### Per-Model Accuracy
|
||||
|
||||
Accuracy across **4 LLMs** on 154 data retrieval questions:
|
||||
|
||||
|
||||
Reference in New Issue
Block a user