mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 15:24:10 +08:00
chore(benchmarks): replace LLM-as-judge, new structural validation
This commit is contained in:
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1,4 +1,4 @@
|
||||
Benchmarks test LLM comprehension across different input formats using 204 data retrieval questions on 4 models.
|
||||
Benchmarks test LLM comprehension across different input formats using 209 data retrieval questions on 4 models.
|
||||
|
||||
<details>
|
||||
<summary><strong>Show Dataset Catalog</strong></summary>
|
||||
@@ -13,6 +13,11 @@ Benchmarks test LLM comprehension across different input formats using 204 data
|
||||
| Top 100 GitHub repositories | 100 | uniform | ✓ | 100% |
|
||||
| Semi-uniform event logs | 75 | semi-uniform | ✗ | 50% |
|
||||
| Deeply nested configuration | 11 | deep | ✗ | 0% |
|
||||
| Valid complete dataset (control) | 20 | uniform | ✓ | 100% |
|
||||
| Array truncated: 3 rows removed from end | 17 | uniform | ✓ | 100% |
|
||||
| Extra rows added beyond declared length | 23 | uniform | ✓ | 100% |
|
||||
| Inconsistent field count (missing salary in row 10) | 20 | uniform | ✓ | 100% |
|
||||
| Missing required fields (no email in multiple rows) | 20 | uniform | ✓ | 100% |
|
||||
|
||||
**Structure classes:**
|
||||
- **uniform**: All objects have identical fields with primitive values
|
||||
@@ -31,67 +36,69 @@ Benchmarks test LLM comprehension across different input formats using 204 data
|
||||
Each format's overall performance, balancing accuracy against token cost:
|
||||
|
||||
```
|
||||
TOON ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 17.2 │ 75.5% acc │ 4,389 tokens
|
||||
CSV ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░ 16.6 │ 67.8% acc │ 4,080 tokens
|
||||
JSON compact ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░ 14.7 │ 73.3% acc │ 4,982 tokens
|
||||
YAML ▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░ 12.1 │ 72.4% acc │ 5,976 tokens
|
||||
JSON ▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░░░ 10.0 │ 72.4% acc │ 7,260 tokens
|
||||
XML ▓▓▓▓▓▓▓▓▓▓░░░░░░░░░░ 8.4 │ 69.0% acc │ 8,251 tokens
|
||||
TOON ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ 26.9 │ 73.9% acc │ 2,744 tokens
|
||||
JSON compact ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░ 22.9 │ 70.7% acc │ 3,081 tokens
|
||||
YAML ▓▓▓▓▓▓▓▓▓▓▓▓▓▓░░░░░░ 18.6 │ 69.0% acc │ 3,719 tokens
|
||||
JSON ▓▓▓▓▓▓▓▓▓▓▓░░░░░░░░░ 15.3 │ 69.7% acc │ 4,545 tokens
|
||||
XML ▓▓▓▓▓▓▓▓▓▓░░░░░░░░░░ 13.0 │ 67.1% acc │ 5,167 tokens
|
||||
```
|
||||
|
||||
TOON achieves **75.5%** accuracy (vs JSON's 72.4%) while using **39.5% fewer tokens**.
|
||||
TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.6% fewer tokens**.
|
||||
|
||||
**Note on CSV:** Excluded from ranking as it only supports 436/209 questions (flat tabular data only). While CSV is highly token-efficient for simple tabular data, it cannot represent nested structures that other formats handle.
|
||||
|
||||
#### Per-Model Accuracy
|
||||
|
||||
Accuracy across 4 LLMs on 204 data retrieval questions:
|
||||
Accuracy across 4 LLMs on 209 data retrieval questions:
|
||||
|
||||
```
|
||||
claude-haiku-4-5-20251001
|
||||
→ TOON ████████████░░░░░░░░ 62.3% (127/204)
|
||||
JSON ███████████░░░░░░░░░ 56.9% (116/204)
|
||||
YAML ███████████░░░░░░░░░ 55.9% (114/204)
|
||||
JSON compact ███████████░░░░░░░░░ 54.9% (112/204)
|
||||
XML ███████████░░░░░░░░░ 54.9% (112/204)
|
||||
CSV █████████░░░░░░░░░░░ 47.1% (49/104)
|
||||
→ TOON ████████████░░░░░░░░ 59.8% (125/209)
|
||||
JSON ███████████░░░░░░░░░ 57.4% (120/209)
|
||||
YAML ███████████░░░░░░░░░ 56.0% (117/209)
|
||||
XML ███████████░░░░░░░░░ 55.5% (116/209)
|
||||
JSON compact ███████████░░░░░░░░░ 55.0% (115/209)
|
||||
CSV ██████████░░░░░░░░░░ 50.5% (55/109)
|
||||
|
||||
gemini-2.5-flash
|
||||
→ TOON ██████████████████░░ 91.2% (186/204)
|
||||
YAML ██████████████████░░ 89.7% (183/204)
|
||||
JSON compact ██████████████████░░ 87.7% (179/204)
|
||||
JSON ██████████████████░░ 87.7% (179/204)
|
||||
XML █████████████████░░░ 87.3% (178/204)
|
||||
CSV █████████████████░░░ 85.6% (89/104)
|
||||
→ TOON ██████████████████░░ 87.6% (183/209)
|
||||
CSV █████████████████░░░ 86.2% (94/109)
|
||||
JSON compact ████████████████░░░░ 82.3% (172/209)
|
||||
YAML ████████████████░░░░ 79.4% (166/209)
|
||||
XML ████████████████░░░░ 79.4% (166/209)
|
||||
JSON ███████████████░░░░░ 77.0% (161/209)
|
||||
|
||||
gpt-5-nano
|
||||
JSON compact ███████████████████░ 93.6% (191/204)
|
||||
CSV ██████████████████░░ 90.4% (94/104)
|
||||
JSON ██████████████████░░ 89.7% (183/204)
|
||||
→ TOON ██████████████████░░ 89.2% (182/204)
|
||||
YAML ██████████████████░░ 89.2% (182/204)
|
||||
XML ████████████████░░░░ 81.4% (166/204)
|
||||
→ TOON ██████████████████░░ 90.9% (190/209)
|
||||
JSON compact ██████████████████░░ 90.9% (190/209)
|
||||
JSON ██████████████████░░ 89.0% (186/209)
|
||||
CSV ██████████████████░░ 89.0% (97/109)
|
||||
YAML █████████████████░░░ 87.1% (182/209)
|
||||
XML ████████████████░░░░ 80.9% (169/209)
|
||||
|
||||
grok-4-fast-non-reasoning
|
||||
→ TOON ████████████░░░░░░░░ 59.3% (121/204)
|
||||
JSON compact ███████████░░░░░░░░░ 56.9% (116/204)
|
||||
JSON ███████████░░░░░░░░░ 55.4% (113/204)
|
||||
YAML ███████████░░░░░░░░░ 54.9% (112/204)
|
||||
XML ██████████░░░░░░░░░░ 52.5% (107/204)
|
||||
CSV ██████████░░░░░░░░░░ 48.1% (50/104)
|
||||
→ TOON ███████████░░░░░░░░░ 57.4% (120/209)
|
||||
JSON ███████████░░░░░░░░░ 55.5% (116/209)
|
||||
JSON compact ███████████░░░░░░░░░ 54.5% (114/209)
|
||||
YAML ███████████░░░░░░░░░ 53.6% (112/209)
|
||||
XML ███████████░░░░░░░░░ 52.6% (110/209)
|
||||
CSV ██████████░░░░░░░░░░ 52.3% (57/109)
|
||||
```
|
||||
|
||||
**Key tradeoff:** TOON achieves **75.5% accuracy** (vs JSON's 72.4%) while using **39.5% fewer tokens** on these datasets.
|
||||
**Key tradeoff:** TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.6% fewer tokens** on these datasets.
|
||||
|
||||
<details>
|
||||
<summary><strong>Performance by dataset, model, and question type</strong></summary>
|
||||
|
||||
#### Performance by Question Type
|
||||
|
||||
| Question Type | TOON | JSON compact | JSON | YAML | XML | CSV |
|
||||
| Question Type | TOON | JSON compact | JSON | CSV | YAML | XML |
|
||||
| ------------- | ---- | ---- | ---- | ---- | ---- | ---- |
|
||||
| Field Retrieval | 100.0% | 98.9% | 99.6% | 99.3% | 98.5% | 100.0% |
|
||||
| Aggregation | 56.3% | 52.4% | 53.2% | 53.2% | 47.2% | 40.5% |
|
||||
| Filtering | 58.9% | 58.3% | 54.2% | 53.1% | 50.5% | 49.1% |
|
||||
| Structure Awareness | 89.0% | 85.0% | 82.0% | 85.0% | 79.0% | 84.4% |
|
||||
| Field Retrieval | 99.6% | 99.3% | 99.3% | 100.0% | 98.2% | 98.9% |
|
||||
| Aggregation | 54.4% | 47.2% | 48.8% | 44.0% | 47.6% | 41.3% |
|
||||
| Filtering | 56.3% | 57.3% | 50.5% | 49.1% | 51.0% | 47.9% |
|
||||
| Structure Awareness | 88.0% | 83.0% | 83.0% | 85.9% | 80.0% | 80.0% |
|
||||
| Structural Validation | 70.0% | 45.0% | 50.0% | 80.0% | 60.0% | 80.0% |
|
||||
|
||||
#### Performance by Dataset
|
||||
|
||||
@@ -99,64 +106,119 @@ grok-4-fast-non-reasoning
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `csv` | 70.7% | 2,337 | 116/164 |
|
||||
| `toon` | 72.0% | 2,483 | 118/164 |
|
||||
| `json-compact` | 71.3% | 3,943 | 117/164 |
|
||||
| `yaml` | 70.1% | 4,969 | 115/164 |
|
||||
| `json-pretty` | 72.6% | 6,347 | 119/164 |
|
||||
| `xml` | 70.7% | 7,314 | 116/164 |
|
||||
| `csv` | 72.0% | 2,352 | 118/164 |
|
||||
| `toon` | 73.8% | 2,518 | 121/164 |
|
||||
| `json-compact` | 69.5% | 3,953 | 114/164 |
|
||||
| `yaml` | 68.3% | 4,982 | 112/164 |
|
||||
| `json-pretty` | 68.3% | 6,360 | 112/164 |
|
||||
| `xml` | 69.5% | 7,324 | 114/164 |
|
||||
|
||||
##### E-commerce orders with nested structures
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `toon` | 83.5% | 7,197 | 137/164 |
|
||||
| `json-compact` | 79.3% | 6,784 | 130/164 |
|
||||
| `yaml` | 78.7% | 8,334 | 129/164 |
|
||||
| `json-pretty` | 78.7% | 10,700 | 129/164 |
|
||||
| `xml` | 73.8% | 12,013 | 121/164 |
|
||||
| `toon` | 81.1% | 7,232 | 133/164 |
|
||||
| `json-compact` | 76.8% | 6,794 | 126/164 |
|
||||
| `yaml` | 75.6% | 8,347 | 124/164 |
|
||||
| `json-pretty` | 76.2% | 10,713 | 125/164 |
|
||||
| `xml` | 74.4% | 12,023 | 122/164 |
|
||||
|
||||
##### Time-series analytics data
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `toon` | 75.8% | 1,513 | 91/120 |
|
||||
| `csv` | 72.5% | 1,391 | 87/120 |
|
||||
| `json-compact` | 70.0% | 2,339 | 84/120 |
|
||||
| `yaml` | 70.0% | 2,936 | 84/120 |
|
||||
| `json-pretty` | 71.7% | 3,663 | 86/120 |
|
||||
| `xml` | 71.7% | 4,374 | 86/120 |
|
||||
| `csv` | 73.3% | 1,406 | 88/120 |
|
||||
| `toon` | 72.5% | 1,548 | 87/120 |
|
||||
| `json-compact` | 71.7% | 2,349 | 86/120 |
|
||||
| `yaml` | 71.7% | 2,949 | 86/120 |
|
||||
| `json-pretty` | 68.3% | 3,676 | 82/120 |
|
||||
| `xml` | 68.3% | 4,384 | 82/120 |
|
||||
|
||||
##### Top 100 GitHub repositories
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `toon` | 64.4% | 8,745 | 85/132 |
|
||||
| `csv` | 59.8% | 8,513 | 79/132 |
|
||||
| `json-compact` | 60.6% | 11,455 | 80/132 |
|
||||
| `yaml` | 61.4% | 13,129 | 81/132 |
|
||||
| `json-pretty` | 59.1% | 15,145 | 78/132 |
|
||||
| `xml` | 51.5% | 17,095 | 68/132 |
|
||||
| `toon` | 62.9% | 8,780 | 83/132 |
|
||||
| `csv` | 61.4% | 8,528 | 81/132 |
|
||||
| `yaml` | 59.8% | 13,142 | 79/132 |
|
||||
| `json-compact` | 55.3% | 11,465 | 73/132 |
|
||||
| `json-pretty` | 56.1% | 15,158 | 74/132 |
|
||||
| `xml` | 48.5% | 17,105 | 64/132 |
|
||||
|
||||
##### Semi-uniform event logs
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `json-compact` | 67.5% | 4,809 | 81/120 |
|
||||
| `yaml` | 63.3% | 5,814 | 76/120 |
|
||||
| `toon` | 62.5% | 5,764 | 75/120 |
|
||||
| `json-pretty` | 59.2% | 6,784 | 71/120 |
|
||||
| `xml` | 55.0% | 7,699 | 66/120 |
|
||||
| `json-compact` | 63.3% | 4,819 | 76/120 |
|
||||
| `toon` | 57.5% | 5,799 | 69/120 |
|
||||
| `json-pretty` | 59.2% | 6,797 | 71/120 |
|
||||
| `yaml` | 48.3% | 5,827 | 58/120 |
|
||||
| `xml` | 46.7% | 7,709 | 56/120 |
|
||||
|
||||
##### Deeply nested configuration
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `json-compact` | 91.4% | 564 | 106/116 |
|
||||
| `toon` | 94.8% | 631 | 110/116 |
|
||||
| `yaml` | 91.4% | 673 | 106/116 |
|
||||
| `json-pretty` | 93.1% | 919 | 108/116 |
|
||||
| `xml` | 91.4% | 1,008 | 106/116 |
|
||||
| `json-compact` | 92.2% | 574 | 107/116 |
|
||||
| `toon` | 95.7% | 666 | 111/116 |
|
||||
| `yaml` | 91.4% | 686 | 106/116 |
|
||||
| `json-pretty` | 94.0% | 932 | 109/116 |
|
||||
| `xml` | 92.2% | 1,018 | 107/116 |
|
||||
|
||||
##### Valid complete dataset (control)
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `toon` | 100.0% | 544 | 4/4 |
|
||||
| `json-compact` | 100.0% | 795 | 4/4 |
|
||||
| `yaml` | 100.0% | 1,003 | 4/4 |
|
||||
| `json-pretty` | 100.0% | 1,282 | 4/4 |
|
||||
| `csv` | 25.0% | 492 | 1/4 |
|
||||
| `xml` | 0.0% | 1,467 | 0/4 |
|
||||
|
||||
##### Array truncated: 3 rows removed from end
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `csv` | 100.0% | 425 | 4/4 |
|
||||
| `xml` | 100.0% | 1,251 | 4/4 |
|
||||
| `toon` | 0.0% | 474 | 0/4 |
|
||||
| `json-compact` | 0.0% | 681 | 0/4 |
|
||||
| `json-pretty` | 0.0% | 1,096 | 0/4 |
|
||||
| `yaml` | 0.0% | 859 | 0/4 |
|
||||
|
||||
##### Extra rows added beyond declared length
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `csv` | 100.0% | 566 | 4/4 |
|
||||
| `toon` | 75.0% | 621 | 3/4 |
|
||||
| `xml` | 100.0% | 1,692 | 4/4 |
|
||||
| `yaml` | 75.0% | 1,157 | 3/4 |
|
||||
| `json-compact` | 50.0% | 917 | 2/4 |
|
||||
| `json-pretty` | 50.0% | 1,476 | 2/4 |
|
||||
|
||||
##### Inconsistent field count (missing salary in row 10)
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `csv` | 75.0% | 489 | 3/4 |
|
||||
| `yaml` | 100.0% | 996 | 4/4 |
|
||||
| `toon` | 100.0% | 1,019 | 4/4 |
|
||||
| `json-compact` | 75.0% | 790 | 3/4 |
|
||||
| `xml` | 100.0% | 1,458 | 4/4 |
|
||||
| `json-pretty` | 75.0% | 1,274 | 3/4 |
|
||||
|
||||
##### Missing required fields (no email in multiple rows)
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `csv` | 100.0% | 329 | 4/4 |
|
||||
| `xml` | 100.0% | 1,411 | 4/4 |
|
||||
| `toon` | 75.0% | 983 | 3/4 |
|
||||
| `yaml` | 25.0% | 960 | 1/4 |
|
||||
| `json-pretty` | 25.0% | 1,230 | 1/4 |
|
||||
| `json-compact` | 0.0% | 755 | 0/4 |
|
||||
|
||||
#### Performance by Model
|
||||
|
||||
@@ -164,45 +226,45 @@ grok-4-fast-non-reasoning
|
||||
|
||||
| Format | Accuracy | Correct/Total |
|
||||
| ------ | -------- | ------------- |
|
||||
| `toon` | 62.3% | 127/204 |
|
||||
| `json-pretty` | 56.9% | 116/204 |
|
||||
| `yaml` | 55.9% | 114/204 |
|
||||
| `json-compact` | 54.9% | 112/204 |
|
||||
| `xml` | 54.9% | 112/204 |
|
||||
| `csv` | 47.1% | 49/104 |
|
||||
| `toon` | 59.8% | 125/209 |
|
||||
| `json-pretty` | 57.4% | 120/209 |
|
||||
| `yaml` | 56.0% | 117/209 |
|
||||
| `xml` | 55.5% | 116/209 |
|
||||
| `json-compact` | 55.0% | 115/209 |
|
||||
| `csv` | 50.5% | 55/109 |
|
||||
|
||||
##### gemini-2.5-flash
|
||||
|
||||
| Format | Accuracy | Correct/Total |
|
||||
| ------ | -------- | ------------- |
|
||||
| `toon` | 91.2% | 186/204 |
|
||||
| `yaml` | 89.7% | 183/204 |
|
||||
| `json-compact` | 87.7% | 179/204 |
|
||||
| `json-pretty` | 87.7% | 179/204 |
|
||||
| `xml` | 87.3% | 178/204 |
|
||||
| `csv` | 85.6% | 89/104 |
|
||||
| `toon` | 87.6% | 183/209 |
|
||||
| `csv` | 86.2% | 94/109 |
|
||||
| `json-compact` | 82.3% | 172/209 |
|
||||
| `yaml` | 79.4% | 166/209 |
|
||||
| `xml` | 79.4% | 166/209 |
|
||||
| `json-pretty` | 77.0% | 161/209 |
|
||||
|
||||
##### gpt-5-nano
|
||||
|
||||
| Format | Accuracy | Correct/Total |
|
||||
| ------ | -------- | ------------- |
|
||||
| `json-compact` | 93.6% | 191/204 |
|
||||
| `csv` | 90.4% | 94/104 |
|
||||
| `json-pretty` | 89.7% | 183/204 |
|
||||
| `toon` | 89.2% | 182/204 |
|
||||
| `yaml` | 89.2% | 182/204 |
|
||||
| `xml` | 81.4% | 166/204 |
|
||||
| `toon` | 90.9% | 190/209 |
|
||||
| `json-compact` | 90.9% | 190/209 |
|
||||
| `json-pretty` | 89.0% | 186/209 |
|
||||
| `csv` | 89.0% | 97/109 |
|
||||
| `yaml` | 87.1% | 182/209 |
|
||||
| `xml` | 80.9% | 169/209 |
|
||||
|
||||
##### grok-4-fast-non-reasoning
|
||||
|
||||
| Format | Accuracy | Correct/Total |
|
||||
| ------ | -------- | ------------- |
|
||||
| `toon` | 59.3% | 121/204 |
|
||||
| `json-compact` | 56.9% | 116/204 |
|
||||
| `json-pretty` | 55.4% | 113/204 |
|
||||
| `yaml` | 54.9% | 112/204 |
|
||||
| `xml` | 52.5% | 107/204 |
|
||||
| `csv` | 48.1% | 50/104 |
|
||||
| `toon` | 57.4% | 120/209 |
|
||||
| `json-pretty` | 55.5% | 116/209 |
|
||||
| `json-compact` | 54.5% | 114/209 |
|
||||
| `yaml` | 53.6% | 112/209 |
|
||||
| `xml` | 52.6% | 110/209 |
|
||||
| `csv` | 52.3% | 57/109 |
|
||||
|
||||
</details>
|
||||
|
||||
@@ -215,8 +277,9 @@ This benchmark tests **LLM comprehension and data retrieval accuracy** across di
|
||||
|
||||
#### Datasets Tested
|
||||
|
||||
Six datasets designed to test different structural patterns:
|
||||
Eleven datasets designed to test different structural patterns and validation capabilities:
|
||||
|
||||
**Primary datasets:**
|
||||
1. **Tabular** (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
|
||||
2. **Nested** (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
|
||||
3. **Analytics** (60 days of metrics): Time-series data with dates and numeric values.
|
||||
@@ -224,21 +287,28 @@ Six datasets designed to test different structural patterns:
|
||||
5. **Event Logs** (75 logs): Semi-uniform data with ~50% flat logs and ~50% with nested error objects.
|
||||
6. **Nested Config** (1 configuration): Deeply nested configuration with minimal tabular eligibility.
|
||||
|
||||
**Structural validation datasets:**
|
||||
7. **Control**: Valid complete dataset (baseline for validation)
|
||||
8. **Truncated**: Array with 3 rows removed from end (tests [N] length detection)
|
||||
9. **Extra rows**: Array with 3 additional rows beyond declared length
|
||||
10. **Width mismatch**: Inconsistent field count (missing salary in row 10)
|
||||
11. **Missing fields**: Systematic field omissions (no email in multiple rows)
|
||||
|
||||
#### Question Types
|
||||
|
||||
204 questions are generated dynamically across four categories:
|
||||
209 questions are generated dynamically across five categories:
|
||||
|
||||
- **Field retrieval (33%)**: Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)
|
||||
- Example: "What is Alice's salary?" → `75000`
|
||||
- Example: "How many items are in order ORD-0042?" → `3`
|
||||
- Example: "What is the customer name for order ORD-0042?" → `John Doe`
|
||||
|
||||
- **Aggregation (31%)**: Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)
|
||||
- **Aggregation (30%)**: Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)
|
||||
- Example: "How many employees work in Engineering?" → `17`
|
||||
- Example: "What is the total revenue across all orders?" → `45123.50`
|
||||
- Example: "How many employees have salary > 80000?" → `23`
|
||||
|
||||
- **Filtering (24%)**: Multi-condition queries requiring compound logic (AND constraints across fields)
|
||||
- **Filtering (23%)**: Multi-condition queries requiring compound logic (AND constraints across fields)
|
||||
- Example: "How many employees in Sales have salary > 80000?" → `5`
|
||||
- Example: "How many active employees have more than 10 years of experience?" → `8`
|
||||
|
||||
@@ -247,17 +317,22 @@ Six datasets designed to test different structural patterns:
|
||||
- Example: "List the field names for employees" → `id, name, email, department, salary, yearsExperience, active`
|
||||
- Example: "What is the department of the last employee?" → `Sales`
|
||||
|
||||
- **Structural validation (2%)**: Tests ability to detect incomplete, truncated, or corrupted data using structural metadata
|
||||
- Example: "Is this data complete and valid?" → `YES` (control dataset) or `NO` (corrupted datasets)
|
||||
- Tests TOON's [N] length validation and {fields} consistency checking
|
||||
- Demonstrates CSV's lack of structural validation capabilities
|
||||
|
||||
#### Evaluation Process
|
||||
|
||||
1. **Format conversion**: Each dataset is converted to all 6 formats (TOON, JSON compact, JSON, YAML, XML, CSV).
|
||||
1. **Format conversion**: Each dataset is converted to all 6 formats (TOON, JSON compact, JSON, CSV, YAML, XML).
|
||||
2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer.
|
||||
3. **Validate with LLM-as-judge**: `gpt-5-nano` validates if the answer is semantically correct (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`).
|
||||
3. **Validate deterministically**: Answers are validated using type-aware comparison (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`) without requiring an LLM judge.
|
||||
|
||||
#### Models & Configuration
|
||||
|
||||
- **Models tested**: `claude-haiku-4-5-20251001`, `gemini-2.5-flash`, `gpt-5-nano`, `grok-4-fast-non-reasoning`
|
||||
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding (GPT-5 tokenizer)
|
||||
- **Temperature**: Not set (models use their defaults)
|
||||
- **Total evaluations**: 204 questions × 6 formats × 4 models = 4,896 LLM calls
|
||||
- **Total evaluations**: 209 questions × 6 formats × 4 models = 5,016 LLM calls
|
||||
|
||||
</details>
|
||||
|
||||
@@ -5,19 +5,19 @@ Datasets with nested or semi-uniform structures. CSV excluded as it cannot prope
|
||||
```
|
||||
🛒 E-commerce orders with nested structures ┊ Tabular: 33%
|
||||
│
|
||||
TOON █████████████░░░░░░░ 72,743 tokens
|
||||
├─ vs JSON (−33.1%) 108,731 tokens
|
||||
├─ vs JSON compact (+5.5%) 68,936 tokens
|
||||
├─ vs YAML (−14.1%) 84,724 tokens
|
||||
└─ vs XML (−40.5%) 122,313 tokens
|
||||
TOON █████████████░░░░░░░ 72,771 tokens
|
||||
├─ vs JSON (−33.1%) 108,806 tokens
|
||||
├─ vs JSON compact (+5.5%) 68,975 tokens
|
||||
├─ vs YAML (−14.2%) 84,780 tokens
|
||||
└─ vs XML (−40.5%) 122,406 tokens
|
||||
|
||||
🧾 Semi-uniform event logs ┊ Tabular: 50%
|
||||
│
|
||||
TOON █████████████████░░░ 153,223 tokens
|
||||
├─ vs JSON (−15.0%) 180,196 tokens
|
||||
├─ vs JSON compact (+19.9%) 127,740 tokens
|
||||
├─ vs YAML (−0.8%) 154,514 tokens
|
||||
└─ vs XML (−25.2%) 204,800 tokens
|
||||
TOON █████████████████░░░ 153,211 tokens
|
||||
├─ vs JSON (−15.0%) 180,176 tokens
|
||||
├─ vs JSON compact (+19.9%) 127,731 tokens
|
||||
├─ vs YAML (−0.8%) 154,505 tokens
|
||||
└─ vs XML (−25.2%) 204,777 tokens
|
||||
|
||||
🧩 Deeply nested configuration ┊ Tabular: 0%
|
||||
│
|
||||
@@ -28,11 +28,11 @@ Datasets with nested or semi-uniform structures. CSV excluded as it cannot prope
|
||||
└─ vs XML (−37.4%) 1,008 tokens
|
||||
|
||||
──────────────────────────────────── Total ────────────────────────────────────
|
||||
TOON ████████████████░░░░ 226,597 tokens
|
||||
├─ vs JSON (−21.8%) 289,846 tokens
|
||||
├─ vs JSON compact (+14.9%) 197,240 tokens
|
||||
├─ vs YAML (−5.5%) 239,911 tokens
|
||||
└─ vs XML (−30.9%) 328,121 tokens
|
||||
TOON ████████████████░░░░ 226,613 tokens
|
||||
├─ vs JSON (−21.8%) 289,901 tokens
|
||||
├─ vs JSON compact (+14.9%) 197,270 tokens
|
||||
├─ vs YAML (−5.6%) 239,958 tokens
|
||||
└─ vs XML (−31.0%) 328,191 tokens
|
||||
```
|
||||
|
||||
#### Flat-Only Track
|
||||
@@ -42,21 +42,21 @@ Datasets with flat tabular structures where CSV is applicable.
|
||||
```
|
||||
👥 Uniform employee records ┊ Tabular: 100%
|
||||
│
|
||||
CSV ███████████████████░ 46,956 tokens
|
||||
TOON ████████████████████ 49,827 tokens (+6.1% vs CSV)
|
||||
├─ vs JSON (−60.7%) 126,854 tokens
|
||||
├─ vs JSON compact (−36.8%) 78,850 tokens
|
||||
├─ vs YAML (−50.0%) 99,701 tokens
|
||||
└─ vs XML (−66.0%) 146,440 tokens
|
||||
CSV ███████████████████░ 46,954 tokens
|
||||
TOON ████████████████████ 49,831 tokens (+6.1% vs CSV)
|
||||
├─ vs JSON (−60.7%) 126,860 tokens
|
||||
├─ vs JSON compact (−36.8%) 78,856 tokens
|
||||
├─ vs YAML (−50.0%) 99,706 tokens
|
||||
└─ vs XML (−66.0%) 146,444 tokens
|
||||
|
||||
📈 Time-series analytics data ┊ Tabular: 100%
|
||||
│
|
||||
CSV ██████████████████░░ 8,396 tokens
|
||||
TOON ████████████████████ 9,128 tokens (+8.7% vs CSV)
|
||||
├─ vs JSON (−59.0%) 22,258 tokens
|
||||
├─ vs JSON compact (−35.8%) 14,224 tokens
|
||||
├─ vs YAML (−48.9%) 17,871 tokens
|
||||
└─ vs XML (−65.7%) 26,629 tokens
|
||||
CSV ██████████████████░░ 8,388 tokens
|
||||
TOON ████████████████████ 9,120 tokens (+8.7% vs CSV)
|
||||
├─ vs JSON (−59.0%) 22,250 tokens
|
||||
├─ vs JSON compact (−35.8%) 14,216 tokens
|
||||
├─ vs YAML (−48.9%) 17,863 tokens
|
||||
└─ vs XML (−65.7%) 26,621 tokens
|
||||
|
||||
⭐ Top 100 GitHub repositories ┊ Tabular: 100%
|
||||
│
|
||||
@@ -68,12 +68,12 @@ Datasets with flat tabular structures where CSV is applicable.
|
||||
└─ vs XML (−48.8%) 17,095 tokens
|
||||
|
||||
──────────────────────────────────── Total ────────────────────────────────────
|
||||
CSV ███████████████████░ 63,865 tokens
|
||||
TOON ████████████████████ 67,700 tokens (+6.0% vs CSV)
|
||||
├─ vs JSON (−58.8%) 164,257 tokens
|
||||
├─ vs JSON compact (−35.2%) 104,529 tokens
|
||||
├─ vs YAML (−48.2%) 130,701 tokens
|
||||
└─ vs XML (−64.4%) 190,164 tokens
|
||||
CSV ███████████████████░ 63,855 tokens
|
||||
TOON ████████████████████ 67,696 tokens (+6.0% vs CSV)
|
||||
├─ vs JSON (−58.8%) 164,255 tokens
|
||||
├─ vs JSON compact (−35.2%) 104,527 tokens
|
||||
├─ vs YAML (−48.2%) 130,698 tokens
|
||||
└─ vs XML (−64.4%) 190,160 tokens
|
||||
```
|
||||
|
||||
<details>
|
||||
@@ -83,64 +83,64 @@ Datasets with flat tabular structures where CSV is applicable.
|
||||
|
||||
**Savings:** 13,130 tokens (59.0% reduction vs JSON)
|
||||
|
||||
**JSON** (22,258 tokens):
|
||||
**JSON** (22,250 tokens):
|
||||
|
||||
```json
|
||||
{
|
||||
"metrics": [
|
||||
{
|
||||
"date": "2025-01-01",
|
||||
"views": 7708,
|
||||
"clicks": 595,
|
||||
"conversions": 69,
|
||||
"revenue": 15369.93,
|
||||
"bounceRate": 0.35
|
||||
"views": 5715,
|
||||
"clicks": 211,
|
||||
"conversions": 28,
|
||||
"revenue": 7976.46,
|
||||
"bounceRate": 0.47
|
||||
},
|
||||
{
|
||||
"date": "2025-01-02",
|
||||
"views": 5894,
|
||||
"clicks": 381,
|
||||
"conversions": 21,
|
||||
"revenue": 2112.12,
|
||||
"bounceRate": 0.3
|
||||
"views": 7103,
|
||||
"clicks": 393,
|
||||
"conversions": 28,
|
||||
"revenue": 8360.53,
|
||||
"bounceRate": 0.32
|
||||
},
|
||||
{
|
||||
"date": "2025-01-03",
|
||||
"views": 6835,
|
||||
"clicks": 422,
|
||||
"conversions": 35,
|
||||
"revenue": 4525.73,
|
||||
"views": 7248,
|
||||
"clicks": 378,
|
||||
"conversions": 24,
|
||||
"revenue": 3212.57,
|
||||
"bounceRate": 0.5
|
||||
},
|
||||
{
|
||||
"date": "2025-01-04",
|
||||
"views": 5325,
|
||||
"clicks": 305,
|
||||
"conversions": 22,
|
||||
"revenue": 2445.3,
|
||||
"bounceRate": 0.44
|
||||
"views": 2927,
|
||||
"clicks": 77,
|
||||
"conversions": 11,
|
||||
"revenue": 1211.69,
|
||||
"bounceRate": 0.62
|
||||
},
|
||||
{
|
||||
"date": "2025-01-05",
|
||||
"views": 2974,
|
||||
"clicks": 61,
|
||||
"conversions": 6,
|
||||
"revenue": 956.57,
|
||||
"bounceRate": 0.47
|
||||
"views": 3530,
|
||||
"clicks": 82,
|
||||
"conversions": 8,
|
||||
"revenue": 462.77,
|
||||
"bounceRate": 0.56
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**TOON** (9,128 tokens):
|
||||
**TOON** (9,120 tokens):
|
||||
|
||||
```
|
||||
metrics[5]{date,views,clicks,conversions,revenue,bounceRate}:
|
||||
2025-01-01,7708,595,69,15369.93,0.35
|
||||
2025-01-02,5894,381,21,2112.12,0.3
|
||||
2025-01-03,6835,422,35,4525.73,0.5
|
||||
2025-01-04,5325,305,22,2445.3,0.44
|
||||
2025-01-05,2974,61,6,956.57,0.47
|
||||
2025-01-01,5715,211,28,7976.46,0.47
|
||||
2025-01-02,7103,393,28,8360.53,0.32
|
||||
2025-01-03,7248,378,24,3212.57,0.5
|
||||
2025-01-04,2927,77,11,1211.69,0.62
|
||||
2025-01-05,3530,82,8,462.77,0.56
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
Reference in New Issue
Block a user