mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 15:24:10 +08:00
docs: add benchmarks for gemini-2.5-flash
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -1,24 +1,31 @@
|
||||
### Retrieval Accuracy
|
||||
|
||||
Tested across **2 LLMs** with data retrieval tasks:
|
||||
Tested across **3 LLMs** with data retrieval tasks:
|
||||
|
||||
```
|
||||
gpt-5-nano
|
||||
toon ███████████████████░ 97.5% (155/159)
|
||||
markdown-kv ███████████████████░ 95.6% (152/159)
|
||||
yaml ███████████████████░ 94.3% (150/159)
|
||||
json ███████████████████░ 93.7% (149/159)
|
||||
csv ███████████████████░ 93.7% (149/159)
|
||||
toon ████████████████████ 99.4% (158/159)
|
||||
yaml ███████████████████░ 95.0% (151/159)
|
||||
csv ██████████████████░░ 92.5% (147/159)
|
||||
json ██████████████████░░ 92.5% (147/159)
|
||||
xml ██████████████████░░ 91.2% (145/159)
|
||||
|
||||
claude-haiku-4-5
|
||||
markdown-kv ███████████████░░░░░ 76.7% (122/159)
|
||||
toon ███████████████░░░░░ 75.5% (120/159)
|
||||
json ███████████████░░░░░ 75.5% (120/159)
|
||||
xml ███████████████░░░░░ 75.5% (120/159)
|
||||
csv ███████████████░░░░░ 75.5% (120/159)
|
||||
yaml ███████████████░░░░░ 74.8% (119/159)
|
||||
json ███████████████░░░░░ 75.5% (120/159)
|
||||
yaml ███████████████░░░░░ 74.2% (118/159)
|
||||
|
||||
gemini-2.5-flash
|
||||
xml ██████████████████░░ 91.8% (146/159)
|
||||
csv █████████████████░░░ 86.2% (137/159)
|
||||
toon █████████████████░░░ 84.9% (135/159)
|
||||
json ████████████████░░░░ 81.8% (130/159)
|
||||
yaml ████████████████░░░░ 78.6% (125/159)
|
||||
```
|
||||
|
||||
**Advantage:** TOON achieves **86.5% accuracy** (vs JSON's 84.6%) while using **46.3% fewer tokens**.
|
||||
**Advantage:** TOON achieves **86.6% accuracy** (vs JSON's 83.2%) while using **46.3% fewer tokens**.
|
||||
|
||||
<details>
|
||||
<summary><strong>View detailed breakdown by dataset and model</strong></summary>
|
||||
@@ -29,41 +36,41 @@ claude-haiku-4-5
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `toon` | 86.2% | 2.483 | 100/116 |
|
||||
| `csv` | 80.2% | 2.337 | 93/116 |
|
||||
| `yaml` | 82.8% | 4.969 | 96/116 |
|
||||
| `markdown-kv` | 84.5% | 6.270 | 98/116 |
|
||||
| `json` | 84.5% | 6.347 | 98/116 |
|
||||
| `toon` | 87.4% | 2.483 | 152/174 |
|
||||
| `csv` | 82.8% | 2.337 | 144/174 |
|
||||
| `yaml` | 83.9% | 4.969 | 146/174 |
|
||||
| `json` | 83.9% | 6.347 | 146/174 |
|
||||
| `xml` | 88.5% | 7.314 | 154/174 |
|
||||
|
||||
##### E-commerce orders with nested structures
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `toon` | 90.9% | 5.967 | 80/88 |
|
||||
| `csv` | 90.9% | 6.735 | 80/88 |
|
||||
| `yaml` | 89.8% | 7.328 | 79/88 |
|
||||
| `markdown-kv` | 90.9% | 9.110 | 80/88 |
|
||||
| `json` | 89.8% | 9.694 | 79/88 |
|
||||
| `toon` | 90.9% | 5.967 | 120/132 |
|
||||
| `csv` | 93.9% | 6.735 | 124/132 |
|
||||
| `yaml` | 87.1% | 7.328 | 115/132 |
|
||||
| `json` | 87.9% | 9.694 | 116/132 |
|
||||
| `xml` | 93.2% | 10.992 | 123/132 |
|
||||
|
||||
##### Time-series analytics data
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `csv` | 87.9% | 1.393 | 51/58 |
|
||||
| `toon` | 86.2% | 1.515 | 50/58 |
|
||||
| `yaml` | 86.2% | 2.938 | 50/58 |
|
||||
| `json` | 87.9% | 3.665 | 51/58 |
|
||||
| `markdown-kv` | 86.2% | 3.779 | 50/58 |
|
||||
| `csv` | 89.7% | 1.393 | 78/87 |
|
||||
| `toon` | 88.5% | 1.515 | 77/87 |
|
||||
| `yaml` | 83.9% | 2.938 | 73/87 |
|
||||
| `json` | 88.5% | 3.665 | 77/87 |
|
||||
| `xml` | 85.1% | 4.376 | 74/87 |
|
||||
|
||||
##### Top 100 GitHub repositories
|
||||
|
||||
| Format | Accuracy | Tokens | Correct/Total |
|
||||
| ------ | -------- | ------ | ------------- |
|
||||
| `csv` | 80.4% | 8.513 | 45/56 |
|
||||
| `toon` | 80.4% | 8.745 | 45/56 |
|
||||
| `yaml` | 78.6% | 13.129 | 44/56 |
|
||||
| `markdown-kv` | 82.1% | 15.436 | 46/56 |
|
||||
| `json` | 73.2% | 15.145 | 41/56 |
|
||||
| `toon` | 76.2% | 8.745 | 64/84 |
|
||||
| `csv` | 69.0% | 8.513 | 58/84 |
|
||||
| `yaml` | 71.4% | 13.129 | 60/84 |
|
||||
| `json` | 69.0% | 15.145 | 58/84 |
|
||||
| `xml` | 71.4% | 17.095 | 60/84 |
|
||||
|
||||
#### Performance by Model
|
||||
|
||||
@@ -71,27 +78,37 @@ claude-haiku-4-5
|
||||
|
||||
| Format | Accuracy | Correct/Total |
|
||||
| ------ | -------- | ------------- |
|
||||
| `toon` | 97.5% | 155/159 |
|
||||
| `markdown-kv` | 95.6% | 152/159 |
|
||||
| `yaml` | 94.3% | 150/159 |
|
||||
| `json` | 93.7% | 149/159 |
|
||||
| `csv` | 93.7% | 149/159 |
|
||||
| `toon` | 99.4% | 158/159 |
|
||||
| `yaml` | 95.0% | 151/159 |
|
||||
| `csv` | 92.5% | 147/159 |
|
||||
| `json` | 92.5% | 147/159 |
|
||||
| `xml` | 91.2% | 145/159 |
|
||||
|
||||
##### claude-haiku-4-5
|
||||
|
||||
| Format | Accuracy | Correct/Total |
|
||||
| ------ | -------- | ------------- |
|
||||
| `markdown-kv` | 76.7% | 122/159 |
|
||||
| `toon` | 75.5% | 120/159 |
|
||||
| `json` | 75.5% | 120/159 |
|
||||
| `xml` | 75.5% | 120/159 |
|
||||
| `csv` | 75.5% | 120/159 |
|
||||
| `yaml` | 74.8% | 119/159 |
|
||||
| `json` | 75.5% | 120/159 |
|
||||
| `yaml` | 74.2% | 118/159 |
|
||||
|
||||
##### gemini-2.5-flash
|
||||
|
||||
| Format | Accuracy | Correct/Total |
|
||||
| ------ | -------- | ------------- |
|
||||
| `xml` | 91.8% | 146/159 |
|
||||
| `csv` | 86.2% | 137/159 |
|
||||
| `toon` | 84.9% | 135/159 |
|
||||
| `json` | 81.8% | 130/159 |
|
||||
| `yaml` | 78.6% | 125/159 |
|
||||
|
||||
#### Methodology
|
||||
|
||||
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).
|
||||
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding.
|
||||
- **Question types**: Field retrieval, aggregation, and filtering tasks.
|
||||
- **Real data**: Faker.js-generated datasets + GitHub repositories.
|
||||
- **Question types**: ~160 questions across field retrieval, aggregation, and filtering tasks.
|
||||
- **Datasets**: Faker.js-generated datasets (seeded) + GitHub repositories.
|
||||
|
||||
</details>
|
||||
|
||||
@@ -2,49 +2,50 @@
|
||||
"formatResults": [
|
||||
{
|
||||
"format": "toon",
|
||||
"accuracy": 0.8647798742138365,
|
||||
"accuracy": 0.8658280922431866,
|
||||
"totalTokens": 4678,
|
||||
"averageLatency": 5016,
|
||||
"correctCount": 275,
|
||||
"totalCount": 318
|
||||
"averageLatency": 5321,
|
||||
"correctCount": 413,
|
||||
"totalCount": 477
|
||||
},
|
||||
{
|
||||
"format": "markdown-kv",
|
||||
"format": "xml",
|
||||
"accuracy": 0.8616352201257862,
|
||||
"totalTokens": 8649,
|
||||
"averageLatency": 4628,
|
||||
"correctCount": 274,
|
||||
"totalCount": 318
|
||||
},
|
||||
{
|
||||
"format": "json",
|
||||
"accuracy": 0.8459119496855346,
|
||||
"totalTokens": 8713,
|
||||
"averageLatency": 5369,
|
||||
"correctCount": 269,
|
||||
"totalCount": 318
|
||||
"totalTokens": 9944,
|
||||
"averageLatency": 6035,
|
||||
"correctCount": 411,
|
||||
"totalCount": 477
|
||||
},
|
||||
{
|
||||
"format": "csv",
|
||||
"accuracy": 0.8459119496855346,
|
||||
"accuracy": 0.8469601677148847,
|
||||
"totalTokens": 4745,
|
||||
"averageLatency": 5168,
|
||||
"correctCount": 269,
|
||||
"totalCount": 318
|
||||
"averageLatency": 6551,
|
||||
"correctCount": 404,
|
||||
"totalCount": 477
|
||||
},
|
||||
{
|
||||
"format": "json",
|
||||
"accuracy": 0.8322851153039832,
|
||||
"totalTokens": 8713,
|
||||
"averageLatency": 7981,
|
||||
"correctCount": 397,
|
||||
"totalCount": 477
|
||||
},
|
||||
{
|
||||
"format": "yaml",
|
||||
"accuracy": 0.8459119496855346,
|
||||
"accuracy": 0.8259958071278826,
|
||||
"totalTokens": 7091,
|
||||
"averageLatency": 4299,
|
||||
"correctCount": 269,
|
||||
"totalCount": 318
|
||||
"averageLatency": 5561,
|
||||
"correctCount": 394,
|
||||
"totalCount": 477
|
||||
}
|
||||
],
|
||||
"questions": 159,
|
||||
"models": [
|
||||
"gpt-5-nano",
|
||||
"claude-haiku-4-5"
|
||||
"claude-haiku-4-5",
|
||||
"gemini-2.5-flash"
|
||||
],
|
||||
"datasets": [
|
||||
{
|
||||
@@ -77,14 +78,14 @@
|
||||
"csv-nested": 6735,
|
||||
"csv-analytics": 1393,
|
||||
"csv-github": 8513,
|
||||
"markdown-kv-tabular": 6270,
|
||||
"markdown-kv-nested": 9110,
|
||||
"markdown-kv-analytics": 3779,
|
||||
"markdown-kv-github": 15436,
|
||||
"xml-tabular": 7314,
|
||||
"xml-nested": 10992,
|
||||
"xml-analytics": 4376,
|
||||
"xml-github": 17095,
|
||||
"yaml-tabular": 4969,
|
||||
"yaml-nested": 7328,
|
||||
"yaml-analytics": 2938,
|
||||
"yaml-github": 13129
|
||||
},
|
||||
"timestamp": "2025-10-27T13:17:28.071Z"
|
||||
"timestamp": "2025-10-27T15:01:57.523Z"
|
||||
}
|
||||
|
||||
@@ -1,13 +1,23 @@
|
||||
### Token Efficiency
|
||||
|
||||
```
|
||||
⭐ GitHub Repositories ██████████████░░░░░░░░░░░ 8,745 tokens (JSON: 15,145) 💰 42.3% saved
|
||||
📈 Daily Analytics ██████████░░░░░░░░░░░░░░░ 3,630 tokens (JSON: 9,023) 💰 59.8% saved
|
||||
👥 API Response ██████████████░░░░░░░░░░░ 2,597 tokens (JSON: 4,589) 💰 43.4% saved
|
||||
🛒 E-Commerce Order ████████████████░░░░░░░░░ 164 tokens (JSON: 256) 💰 35.9% saved
|
||||
```
|
||||
⭐ GitHub Repositories ██████████████░░░░░░░░░░░ 8,745 tokens
|
||||
vs JSON: 15,145 💰 42.3% saved
|
||||
vs XML: 17,095 💰 48.8% saved
|
||||
|
||||
**Total:** 15,136 tokens (TOON) vs 29,013 tokens (JSON) → 47.8% savings
|
||||
📈 Daily Analytics ██████████░░░░░░░░░░░░░░░ 4,507 tokens
|
||||
vs JSON: 10,977 💰 58.9% saved
|
||||
vs XML: 13,128 💰 65.7% saved
|
||||
|
||||
🛒 E-Commerce Order ████████████████░░░░░░░░░ 166 tokens
|
||||
vs JSON: 257 💰 35.4% saved
|
||||
vs XML: 271 💰 38.7% saved
|
||||
|
||||
─────────────────────────────────────────────────────────────────────
|
||||
Total ████████████░░░░░░░░░░░░░ 13,418 tokens
|
||||
vs JSON: 26,379 💰 49.1% saved
|
||||
vs XML: 30,494 💰 56.0% saved
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary><strong>View detailed examples</strong></summary>
|
||||
@@ -16,7 +26,7 @@
|
||||
|
||||
**Configuration:** Top 100 GitHub repositories with stars, forks, and metadata
|
||||
|
||||
**Savings:** 6,400 tokens (42.3% reduction)
|
||||
**Savings:** 6,400 tokens (42.3% reduction vs JSON)
|
||||
|
||||
**JSON** (15,145 tokens):
|
||||
|
||||
@@ -27,7 +37,7 @@
|
||||
"id": 28457823,
|
||||
"name": "freeCodeCamp",
|
||||
"repo": "freeCodeCamp/freeCodeCamp",
|
||||
"description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,...",
|
||||
"description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…",
|
||||
"createdAt": "2014-12-24T17:49:19Z",
|
||||
"updatedAt": "2025-10-27T07:40:58Z",
|
||||
"pushedAt": "2025-10-26T11:31:08Z",
|
||||
@@ -70,7 +80,7 @@
|
||||
|
||||
```
|
||||
repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}:
|
||||
28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,...","2014-12-24T17:49:19Z","2025-10-27T07:40:58Z","2025-10-26T11:31:08Z",430828,8582,42136,main
|
||||
28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…","2014-12-24T17:49:19Z","2025-10-27T07:40:58Z","2025-10-26T11:31:08Z",430828,8582,42136,main
|
||||
132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-27T07:43:25Z","2025-10-10T18:45:01Z",430102,6322,40388,master
|
||||
21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-27T07:44:27Z","2025-10-23T17:26:53Z",409760,8016,32015,main
|
||||
```
|
||||
@@ -81,61 +91,66 @@ repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watc
|
||||
|
||||
**Configuration:** 180 days of web metrics (views, clicks, conversions, revenue)
|
||||
|
||||
**Savings:** 5,393 tokens (59.8% reduction)
|
||||
**Savings:** 6,470 tokens (58.9% reduction vs JSON)
|
||||
|
||||
**JSON** (9,023 tokens):
|
||||
**JSON** (10,977 tokens):
|
||||
|
||||
```json
|
||||
{
|
||||
"metrics": [
|
||||
{
|
||||
"date": "2024-12-31",
|
||||
"views": 1953,
|
||||
"clicks": 224,
|
||||
"conversions": 60,
|
||||
"revenue": 409.79
|
||||
},
|
||||
{
|
||||
"date": "2025-01-01",
|
||||
"views": 2981,
|
||||
"clicks": 242,
|
||||
"conversions": 109,
|
||||
"revenue": 467.73
|
||||
"views": 6890,
|
||||
"clicks": 401,
|
||||
"conversions": 23,
|
||||
"revenue": 6015.59,
|
||||
"bounceRate": 0.63
|
||||
},
|
||||
{
|
||||
"date": "2025-01-02",
|
||||
"views": 3842,
|
||||
"clicks": 100,
|
||||
"conversions": 15,
|
||||
"revenue": 569.44
|
||||
"views": 6940,
|
||||
"clicks": 323,
|
||||
"conversions": 37,
|
||||
"revenue": 9086.44,
|
||||
"bounceRate": 0.36
|
||||
},
|
||||
{
|
||||
"date": "2025-01-03",
|
||||
"views": 4083,
|
||||
"clicks": 161,
|
||||
"conversions": 73,
|
||||
"revenue": 444.75
|
||||
"views": 4390,
|
||||
"clicks": 346,
|
||||
"conversions": 26,
|
||||
"revenue": 6360.75,
|
||||
"bounceRate": 0.48
|
||||
},
|
||||
{
|
||||
"date": "2025-01-04",
|
||||
"views": 5382,
|
||||
"clicks": 257,
|
||||
"conversions": 63,
|
||||
"revenue": 457.28
|
||||
"views": 3429,
|
||||
"clicks": 231,
|
||||
"conversions": 13,
|
||||
"revenue": 2360.96,
|
||||
"bounceRate": 0.65
|
||||
},
|
||||
{
|
||||
"date": "2025-01-05",
|
||||
"views": 5804,
|
||||
"clicks": 186,
|
||||
"conversions": 22,
|
||||
"revenue": 2535.96,
|
||||
"bounceRate": 0.37
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
**TOON** (3,630 tokens):
|
||||
**TOON** (4,507 tokens):
|
||||
|
||||
```
|
||||
metrics[5]{date,views,clicks,conversions,revenue}:
|
||||
2024-12-31,1953,224,60,409.79
|
||||
2025-01-01,2981,242,109,467.73
|
||||
2025-01-02,3842,100,15,569.44
|
||||
2025-01-03,4083,161,73,444.75
|
||||
2025-01-04,5382,257,63,457.28
|
||||
metrics[5]{date,views,clicks,conversions,revenue,bounceRate}:
|
||||
2025-01-01,6890,401,23,6015.59,0.63
|
||||
2025-01-02,6940,323,37,9086.44,0.36
|
||||
2025-01-03,4390,346,26,6360.75,0.48
|
||||
2025-01-04,3429,231,13,2360.96,0.65
|
||||
2025-01-05,5804,186,22,2535.96,0.37
|
||||
```
|
||||
|
||||
</details>
|
||||
|
||||
@@ -116,6 +116,7 @@ else {
|
||||
formatName: task.formatName,
|
||||
formattedData,
|
||||
model,
|
||||
modelName: task.modelName,
|
||||
})
|
||||
|
||||
// Progress update after task completes
|
||||
|
||||
@@ -7,16 +7,20 @@ import { encode } from '../../src/index'
|
||||
import githubRepos from '../data/github-repos.json' with { type: 'json' }
|
||||
import { BENCHMARKS_DIR, ROOT_DIR } from '../src/constants'
|
||||
import { generateAnalyticsData } from '../src/datasets'
|
||||
import { formatters } from '../src/formatters'
|
||||
|
||||
interface BenchmarkResult {
|
||||
name: string
|
||||
emoji: string
|
||||
description: string
|
||||
data: any
|
||||
data: Record<string, any>
|
||||
jsonTokens: number
|
||||
toonTokens: number
|
||||
savings: number
|
||||
savingsPercent: string
|
||||
xmlTokens: number
|
||||
jsonSavings: number
|
||||
jsonSavingsPercent: string
|
||||
xmlSavings: number
|
||||
xmlSavingsPercent: string
|
||||
showDetailed: boolean
|
||||
}
|
||||
|
||||
@@ -37,13 +41,6 @@ const BENCHMARK_EXAMPLES = [
|
||||
getData: () => generateAnalyticsData(180),
|
||||
showDetailed: true,
|
||||
},
|
||||
{
|
||||
name: 'API Response',
|
||||
emoji: '👥',
|
||||
description: '50 user records with metadata and timestamps',
|
||||
getData: () => generateUsers(50),
|
||||
showDetailed: false,
|
||||
},
|
||||
{
|
||||
name: 'E-Commerce Order',
|
||||
emoji: '🛒',
|
||||
@@ -56,6 +53,7 @@ const BENCHMARK_EXAMPLES = [
|
||||
// Calculate total savings
|
||||
let totalJsonTokens = 0
|
||||
let totalToonTokens = 0
|
||||
let totalXmlTokens = 0
|
||||
|
||||
const results: BenchmarkResult[] = []
|
||||
|
||||
@@ -64,14 +62,21 @@ for (const example of BENCHMARK_EXAMPLES) {
|
||||
|
||||
const jsonString = JSON.stringify(data, undefined, 2)
|
||||
const toonString = encode(data)
|
||||
const xmlString = formatters.xml(data)
|
||||
|
||||
const jsonTokens = encodeTokens(jsonString).length
|
||||
const toonTokens = encodeTokens(toonString).length
|
||||
const savings = jsonTokens - toonTokens
|
||||
const savingsPercent = ((savings / jsonTokens) * 100).toFixed(1)
|
||||
const xmlTokens = encodeTokens(xmlString).length
|
||||
|
||||
const jsonSavings = jsonTokens - toonTokens
|
||||
const jsonSavingsPercent = ((jsonSavings / jsonTokens) * 100).toFixed(1)
|
||||
|
||||
const xmlSavings = xmlTokens - toonTokens
|
||||
const xmlSavingsPercent = ((xmlSavings / xmlTokens) * 100).toFixed(1)
|
||||
|
||||
totalJsonTokens += jsonTokens
|
||||
totalToonTokens += toonTokens
|
||||
totalXmlTokens += xmlTokens
|
||||
|
||||
results.push({
|
||||
name: example.name,
|
||||
@@ -80,25 +85,51 @@ for (const example of BENCHMARK_EXAMPLES) {
|
||||
data,
|
||||
jsonTokens,
|
||||
toonTokens,
|
||||
savings,
|
||||
savingsPercent,
|
||||
xmlTokens,
|
||||
jsonSavings,
|
||||
jsonSavingsPercent,
|
||||
xmlSavings,
|
||||
xmlSavingsPercent,
|
||||
showDetailed: example.showDetailed,
|
||||
})
|
||||
}
|
||||
|
||||
const totalSavings = totalJsonTokens - totalToonTokens
|
||||
const totalSavingsPercent = ((totalSavings / totalJsonTokens) * 100).toFixed(1)
|
||||
const totalJsonSavings = totalJsonTokens - totalToonTokens
|
||||
const totalJsonSavingsPercent = ((totalJsonSavings / totalJsonTokens) * 100).toFixed(1)
|
||||
|
||||
// Generate ASCII bar chart visualization
|
||||
const barChartSection = results
|
||||
const totalXmlSavings = totalXmlTokens - totalToonTokens
|
||||
const totalXmlSavingsPercent = ((totalXmlSavings / totalXmlTokens) * 100).toFixed(1)
|
||||
|
||||
// Generate ASCII bar chart visualization (stacked compact format)
|
||||
const datasetRows = results
|
||||
.map((result) => {
|
||||
const percentage = Number.parseFloat(result.savingsPercent)
|
||||
const percentage = Number.parseFloat(result.jsonSavingsPercent)
|
||||
const bar = generateBarChart(100 - percentage) // Invert to show TOON tokens
|
||||
const jsonStr = result.jsonTokens.toLocaleString('en-US')
|
||||
const toonStr = result.toonTokens.toLocaleString('en-US')
|
||||
return `${result.emoji} ${result.name.padEnd(25)} ${bar} ${toonStr.padStart(6)} tokens (JSON: ${jsonStr.padStart(6)}) 💰 ${result.savingsPercent}% saved`
|
||||
const jsonStr = result.jsonTokens.toLocaleString('en-US')
|
||||
const xmlStr = result.xmlTokens.toLocaleString('en-US')
|
||||
|
||||
const line1 = `${result.emoji} ${result.name.padEnd(25)} ${bar} ${toonStr.padStart(6)} tokens`
|
||||
const line2 = ` vs JSON: ${jsonStr.padStart(6)} 💰 ${result.jsonSavingsPercent}% saved`
|
||||
const line3 = ` vs XML: ${xmlStr.padStart(6)} 💰 ${result.xmlSavingsPercent}% saved`
|
||||
|
||||
return `${line1}\n${line2}\n${line3}`
|
||||
})
|
||||
.join('\n')
|
||||
.join('\n\n')
|
||||
|
||||
// Add separator and totals row
|
||||
const separator = '─────────────────────────────────────────────────────────────────────'
|
||||
|
||||
// Calculate bar for totals (TOON vs average of JSON+XML)
|
||||
const averageComparisonTokens = (totalJsonTokens + totalXmlTokens) / 2
|
||||
const totalPercentage = (totalToonTokens / averageComparisonTokens) * 100
|
||||
const totalBar = generateBarChart(totalPercentage)
|
||||
|
||||
const totalLine1 = `Total ${totalBar} ${totalToonTokens.toLocaleString('en-US').padStart(6)} tokens`
|
||||
const totalLine2 = ` vs JSON: ${totalJsonTokens.toLocaleString('en-US').padStart(6)} 💰 ${totalJsonSavingsPercent}% saved`
|
||||
const totalLine3 = ` vs XML: ${totalXmlTokens.toLocaleString('en-US').padStart(6)} 💰 ${totalXmlSavingsPercent}% saved`
|
||||
|
||||
const barChartSection = `${datasetRows}\n\n${separator}\n${totalLine1}\n${totalLine2}\n${totalLine3}`
|
||||
|
||||
// Generate detailed examples (only for selected examples)
|
||||
const detailedExamples = results
|
||||
@@ -108,9 +139,9 @@ const detailedExamples = results
|
||||
let displayData = result.data
|
||||
if (result.name === 'GitHub Repositories') {
|
||||
displayData = {
|
||||
repositories: result.data.repositories.slice(0, 3).map((repo: any) => ({
|
||||
repositories: result.data.repositories.slice(0, 3).map((repo: Record<string, any>) => ({
|
||||
...repo,
|
||||
description: repo.description?.slice(0, 80) + (repo.description?.length > 80 ? '...' : ''),
|
||||
description: repo.description?.slice(0, 80) + (repo.description?.length > 80 ? '…' : ''),
|
||||
})),
|
||||
}
|
||||
}
|
||||
@@ -124,7 +155,7 @@ const detailedExamples = results
|
||||
|
||||
**Configuration:** ${result.description}
|
||||
|
||||
**Savings:** ${result.savings.toLocaleString('en-US')} tokens (${result.savingsPercent}% reduction)
|
||||
**Savings:** ${result.jsonSavings.toLocaleString('en-US')} tokens (${result.jsonSavingsPercent}% reduction vs JSON)
|
||||
|
||||
**JSON** (${result.jsonTokens.toLocaleString('en-US')} tokens):
|
||||
|
||||
@@ -146,8 +177,6 @@ const markdown = `### Token Efficiency
|
||||
${barChartSection}
|
||||
\`\`\`
|
||||
|
||||
**Total:** ${totalToonTokens.toLocaleString('en-US')} tokens (TOON) vs ${totalJsonTokens.toLocaleString('en-US')} tokens (JSON) → ${totalSavingsPercent}% savings
|
||||
|
||||
<details>
|
||||
<summary><strong>View detailed examples</strong></summary>
|
||||
|
||||
@@ -170,23 +199,6 @@ function generateBarChart(percentage: number, maxWidth: number = 25): string {
|
||||
return '█'.repeat(filled) + '░'.repeat(empty)
|
||||
}
|
||||
|
||||
// Generate user API response
|
||||
function generateUsers(count: number) {
|
||||
return {
|
||||
users: Array.from({ length: count }, (_, i) => ({
|
||||
id: i + 1,
|
||||
name: faker.person.fullName(),
|
||||
email: faker.internet.email(),
|
||||
role: faker.helpers.arrayElement(['admin', 'user', 'moderator']),
|
||||
active: faker.datatype.boolean(),
|
||||
createdAt: faker.date.past({ years: 2 }).toISOString(),
|
||||
lastLogin: faker.date.recent({ days: 30 }).toISOString(),
|
||||
})),
|
||||
total: count,
|
||||
page: 1,
|
||||
}
|
||||
}
|
||||
|
||||
// Generate nested e-commerce order
|
||||
function generateOrder() {
|
||||
return {
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
import type { LanguageModelV2 } from '@ai-sdk/provider'
|
||||
import type { EvaluationResult, Question } from './types'
|
||||
import { anthropic } from '@ai-sdk/anthropic'
|
||||
import { google } from '@ai-sdk/google'
|
||||
import { openai } from '@ai-sdk/openai'
|
||||
import { generateText } from 'ai'
|
||||
import { consola } from 'consola'
|
||||
@@ -20,16 +21,18 @@ import { consola } from 'consola'
|
||||
export const models: Record<string, LanguageModelV2> = {
|
||||
'gpt-5-nano': openai('gpt-5-nano'),
|
||||
'claude-haiku-4-5': anthropic('claude-haiku-4-5-20251001'),
|
||||
'gemini-2.5-flash': google('gemini-2.5-flash'),
|
||||
}
|
||||
|
||||
/**
|
||||
* Evaluate a single question with a specific format and model
|
||||
*/
|
||||
export async function evaluateQuestion(
|
||||
{ question, formatName, formattedData, model}:
|
||||
{ question: Question, formatName: string, formattedData: string, model: LanguageModelV2 },
|
||||
{ question, formatName, formattedData, model, modelName}:
|
||||
{ question: Question, formatName: string, formattedData: string, model: LanguageModelV2, modelName: string },
|
||||
): Promise<EvaluationResult> {
|
||||
const prompt = `Given the following data in ${formatName} format:
|
||||
const prompt = `
|
||||
Given the following data in ${formatName} format:
|
||||
|
||||
\`\`\`
|
||||
${formattedData}
|
||||
@@ -37,13 +40,14 @@ ${formattedData}
|
||||
|
||||
Question: ${question.prompt}
|
||||
|
||||
Provide only the direct answer, without any additional explanation or formatting.`
|
||||
Provide only the direct answer, without any additional explanation or formatting.
|
||||
`.trim()
|
||||
|
||||
const startTime = performance.now()
|
||||
const { text, usage } = await generateText({
|
||||
model,
|
||||
prompt,
|
||||
temperature: model.modelId.startsWith('gpt-') ? undefined : 0,
|
||||
temperature: !model.modelId.startsWith('gpt-') ? 0 : undefined,
|
||||
})
|
||||
|
||||
const latencyMs = performance.now() - startTime
|
||||
@@ -56,7 +60,7 @@ Provide only the direct answer, without any additional explanation or formatting
|
||||
return {
|
||||
questionId: question.id,
|
||||
format: formatName,
|
||||
model: model.modelId,
|
||||
model: modelName,
|
||||
expected: question.groundTruth,
|
||||
actual: text.trim(),
|
||||
isCorrect,
|
||||
@@ -93,9 +97,8 @@ Respond with only "YES" or "NO".`
|
||||
|
||||
try {
|
||||
const { text } = await generateText({
|
||||
model: models['claude-haiku-4-5']!,
|
||||
model: models['gpt-5-nano']!,
|
||||
prompt,
|
||||
temperature: 0,
|
||||
})
|
||||
|
||||
return text.trim().toUpperCase() === 'YES'
|
||||
|
||||
@@ -201,8 +201,8 @@ ${modelPerformance}
|
||||
|
||||
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).
|
||||
- **Token counting**: Using \`gpt-tokenizer\` with \`o200k_base\` encoding.
|
||||
- **Question types**: Field retrieval, aggregation, and filtering tasks.
|
||||
- **Real data**: Faker.js-generated datasets + GitHub repositories.
|
||||
- **Question types**: ~160 questions across field retrieval, aggregation, and filtering tasks.
|
||||
- **Datasets**: Faker.js-generated datasets (seeded) + GitHub repositories.
|
||||
|
||||
</details>
|
||||
`.trimStart()
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
export interface Dataset {
|
||||
name: string
|
||||
description: string
|
||||
data: any
|
||||
data: Record<string, any>
|
||||
}
|
||||
|
||||
export interface Question {
|
||||
|
||||
Reference in New Issue
Block a user