docs: overhaul retrieval accuracy benchmark

This commit is contained in:
Johann Schopplich
2025-10-28 20:22:43 +01:00
parent efbe4ded88
commit 67c0df8cb0
22 changed files with 1553 additions and 27288 deletions

View File

@@ -1,51 +1,53 @@
/**
* LLM Retrieval Accuracy Benchmark
*
* Main entry point that orchestrates the full benchmark:
* 1. Generate questions from datasets
* 2. Format data in all formats (JSON, TOON, YAML, Markdown-kv)
* 3. Evaluate each question with each format using LLMs
* 4. Generate reports
*/
import type { EvaluationResult, Question } from '../src/types'
import * as fsp from 'node:fs/promises'
import type { Question } from '../src/types'
import * as path from 'node:path'
import { consola } from 'consola'
import pMap from 'p-map'
import { BENCHMARKS_DIR, DEFAULT_CONCURRENCY, DRY_RUN, DRY_RUN_LIMITS, ROOT_DIR } from '../src/constants'
import process from 'node:process'
import * as prompts from '@clack/prompts'
import PQueue from 'p-queue'
import { DEFAULT_CONCURRENCY, DRY_RUN, DRY_RUN_LIMITS, MODEL_RPM_LIMITS, ROOT_DIR } from '../src/constants'
import { datasets } from '../src/datasets'
import { evaluateQuestion, models } from '../src/evaluate'
import { formatters } from '../src/formatters'
import { generateQuestions } from '../src/questions'
import { calculateFormatResults, calculateTokenCounts, saveResults } from '../src/report'
import { getAllModelResults, hasModelResults, saveModelResults } from '../src/storage'
consola.start('Retrieval Accuracy Benchmark for TOON')
prompts.intro('Retrieval Accuracy Benchmark')
// Check if results already exist
const resultsDir = path.join(BENCHMARKS_DIR, 'results', 'accuracy')
const rawResultsPath = path.join(resultsDir, 'raw-results.json')
const summaryPath = path.join(resultsDir, 'summary.json')
// Prompt user to select which models to benchmark
const modelChoices = models.map(({ modelId }) => ({
value: modelId,
label: modelId,
}))
let existingResults: EvaluationResult[] | undefined
let existingTokenCounts: Record<string, number> | undefined
const selectedModels = await prompts.multiselect({
message: 'Select models to benchmark (Space to select, Enter to confirm)',
options: modelChoices,
required: true,
})
try {
const [rawData, summaryData] = await Promise.all([
fsp.readFile(rawResultsPath, 'utf-8'),
fsp.readFile(summaryPath, 'utf-8'),
])
existingResults = JSON.parse(rawData)
const summary = JSON.parse(summaryData)
existingTokenCounts = summary.tokenCounts
consola.info('Found existing results regenerating report only')
if (prompts.isCancel(selectedModels)) {
prompts.cancel('Benchmark cancelled')
process.exit(0)
}
catch {
// Results don't exist, will run full evaluation
const activeModels = models.filter(m => selectedModels.includes(m.modelId))
prompts.log.info(`Selected ${activeModels.length} model(s): ${activeModels.map(m => m.modelId).join(', ')}`)
// Check which models already have results
const existingModelResults: Record<string, boolean> = {}
for (const model of activeModels) {
const existingResult = await hasModelResults(model.modelId)
if (existingResult)
existingModelResults[model.modelId] = existingResult
}
if (Object.keys(existingModelResults).length > 0) {
prompts.log.info(`Found existing results for ${Object.values(existingModelResults).length} model(s)`)
}
if (DRY_RUN) {
consola.info('Limiting questions and models for dry run')
prompts.log.info('Limiting questions and models for dry run')
}
let questions = generateQuestions()
@@ -55,79 +57,98 @@ if (DRY_RUN && DRY_RUN_LIMITS.maxQuestions) {
questions = questions.slice(0, DRY_RUN_LIMITS.maxQuestions)
}
// Filter models for dry run
const activeModels = DRY_RUN && DRY_RUN_LIMITS.allowedModels.length > 0
? Object.fromEntries(
Object.entries(models).filter(([name]) => DRY_RUN_LIMITS.allowedModels.includes(name)),
)
: models
prompts.log.info(`Evaluating ${questions.length} questions`)
prompts.log.info(`Testing ${Object.keys(formatters).length} formats`)
let results: EvaluationResult[]
let tokenCounts: Record<string, number>
// Evaluate each model separately and save results incrementally
for (const model of activeModels) {
const modelId = model.modelId
if (existingResults && existingTokenCounts) {
// Reuse existing results
results = existingResults
tokenCounts = existingTokenCounts
}
else {
// Run full evaluation
consola.info(`Evaluating ${questions.length} questions`)
consola.info(`Testing ${Object.keys(formatters).length} formats`)
consola.info(`Using ${Object.keys(activeModels).length} models: ${Object.keys(activeModels).join(', ')}`)
// Skip if results already exist
if (existingModelResults[modelId]) {
prompts.log.info(`Skipping ${modelId} (results already exist)`)
continue
}
// Calculate token counts for all format+dataset combinations
tokenCounts = calculateTokenCounts(formatters)
// Generate evaluation tasks
const tasks: { question: Question, formatName: string, modelName: string }[] = []
prompts.log.step(`Running benchmark for ${modelId}`)
// Generate evaluation tasks for this model
const tasks: { question: Question, formatName: string }[] = []
for (const question of questions) {
for (const [formatName] of Object.entries(formatters)) {
for (const [modelName] of Object.entries(activeModels)) {
tasks.push({ question, formatName, modelName })
}
tasks.push({ question, formatName })
}
}
const total = tasks.length
consola.start(`Running ${total} evaluations with concurrency: ${DEFAULT_CONCURRENCY}`)
const rpmLimit = MODEL_RPM_LIMITS[modelId]
const queue = new PQueue({
concurrency: DEFAULT_CONCURRENCY,
intervalCap: rpmLimit,
interval: rpmLimit ? 60_000 : undefined,
})
results = await pMap(
tasks,
async (task, index) => {
const evalSpinner = prompts.spinner()
evalSpinner.start(`Running ${total} evaluations (concurrency: ${DEFAULT_CONCURRENCY}, RPM limit: ${rpmLimit ?? 'unlimited'})`)
let completed = 0
// Queue all tasks
const modelResultPromises = tasks.map(task =>
queue.add(async () => {
// Format data on-demand
const dataset = datasets.find(d => d.name === task.question.dataset)!
const formatter = formatters[task.formatName]!
const formattedData = formatter(dataset.data)
const model = activeModels[task.modelName as keyof typeof activeModels]!
const result = await evaluateQuestion({
question: task.question,
formatName: task.formatName,
formattedData,
model,
modelName: task.modelName,
})
// Progress update after task completes
if ((index + 1) % 10 === 0 || (index + 1) === total) {
const percent = (((index + 1) / total) * 100).toFixed(1)
consola.start(`Progress: ${index + 1}/${total} (${percent}%)`)
completed++
if (completed % 10 === 0 || completed === total) {
const percent = ((completed / total) * 100).toFixed(1)
evalSpinner.message(`Progress: ${completed}/${total} (${percent}%)`)
}
return result
},
{ concurrency: DEFAULT_CONCURRENCY },
}),
)
consola.success('Evaluation complete!')
// Wait for all tasks to complete
const modelResults = await Promise.all(modelResultPromises)
evalSpinner.stop(`Evaluation complete for ${modelId}`)
// Save results immediately for this model
await saveModelResults(modelId, modelResults)
prompts.log.success(`Saved results for ${modelId}`)
}
// Generate/regenerate markdown report
consola.start('Generating report and saving results…')
const formatResults = calculateFormatResults(results, tokenCounts)
await saveResults(results, formatResults, questions, tokenCounts)
// Generate/regenerate markdown report from all available model results
const reportSpinner = prompts.spinner()
reportSpinner.start('Generating report from all model results')
consola.info(`Results saved to: \`${path.relative(ROOT_DIR, resultsDir)}\``)
consola.success(existingResults ? 'Markdown report regenerated!' : 'Evaluation complete!')
// Load all available model results (including any that were skipped)
const allModelResults = await getAllModelResults()
const allResults = Object.values(allModelResults).flat()
if (allResults.length === 0) {
prompts.log.warn('No results available to generate report')
process.exit(0)
}
// Calculate token counts freshly (deterministic, no need to persist)
const tokenCounts = calculateTokenCounts(formatters)
// Calculate format statistics and save report
const formatResults = calculateFormatResults(allResults, tokenCounts)
const resultsDir = await saveResults(allResults, formatResults, questions, tokenCounts)
const reportPath = path.join(resultsDir, 'retrieval-accuracy.md')
prompts.log.info(`Report saved to: \`${path.relative(ROOT_DIR, reportPath)}\``)
reportSpinner.stop('Report generation complete!')