docs: overhaul retrieval accuracy benchmark

This commit is contained in:
Johann Schopplich
2025-10-28 20:22:43 +01:00
parent efbe4ded88
commit 67c0df8cb0
22 changed files with 1553 additions and 27288 deletions

188
README.md
View File

@@ -87,11 +87,11 @@ Total ████████████░░░░░
"repo": "freeCodeCamp/freeCodeCamp",
"description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…",
"createdAt": "2014-12-24T17:49:19Z",
"updatedAt": "2025-10-27T07:40:58Z",
"pushedAt": "2025-10-26T11:31:08Z",
"stars": 430828,
"watchers": 8582,
"forks": 42136,
"updatedAt": "2025-10-28T11:58:08Z",
"pushedAt": "2025-10-28T10:17:16Z",
"stars": 430886,
"watchers": 8583,
"forks": 42146,
"defaultBranch": "main"
},
{
@@ -100,11 +100,11 @@ Total ████████████░░░░░
"repo": "codecrafters-io/build-your-own-x",
"description": "Master programming by recreating your favorite technologies from scratch.",
"createdAt": "2018-05-09T12:03:18Z",
"updatedAt": "2025-10-27T07:43:25Z",
"updatedAt": "2025-10-28T12:37:11Z",
"pushedAt": "2025-10-10T18:45:01Z",
"stars": 430102,
"watchers": 6322,
"forks": 40388,
"stars": 430877,
"watchers": 6332,
"forks": 40453,
"defaultBranch": "master"
},
{
@@ -113,11 +113,11 @@ Total ████████████░░░░░
"repo": "sindresorhus/awesome",
"description": "😎 Awesome lists about all kinds of interesting topics",
"createdAt": "2014-07-11T13:42:37Z",
"updatedAt": "2025-10-27T07:44:27Z",
"pushedAt": "2025-10-23T17:26:53Z",
"stars": 409760,
"watchers": 8016,
"forks": 32015,
"updatedAt": "2025-10-28T12:40:21Z",
"pushedAt": "2025-10-27T17:57:31Z",
"stars": 410052,
"watchers": 8017,
"forks": 32029,
"defaultBranch": "main"
}
]
@@ -128,9 +128,9 @@ Total ████████████░░░░░
```
repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}:
28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…","2014-12-24T17:49:19Z","2025-10-27T07:40:58Z","2025-10-26T11:31:08Z",430828,8582,42136,main
132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-27T07:43:25Z","2025-10-10T18:45:01Z",430102,6322,40388,master
21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-27T07:44:27Z","2025-10-23T17:26:53Z",409760,8016,32015,main
28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…","2014-12-24T17:49:19Z","2025-10-28T11:58:08Z","2025-10-28T10:17:16Z",430886,8583,42146,main
132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-28T12:37:11Z","2025-10-10T18:45:01Z",430877,6332,40453,master
21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-28T12:40:21Z","2025-10-27T17:57:31Z",410052,8017,32029,main
```
---
@@ -208,36 +208,36 @@ metrics[5]{date,views,clicks,conversions,revenue,bounceRate}:
> [!NOTE]
> Measured with [`gpt-tokenizer`](https://github.com/niieani/gpt-tokenizer) using `o200k_base` encoding (used by GPT-5 and other modern models). Savings will vary across models and tokenizers.
<!-- automd:file src="./benchmarks/results/accuracy/report.md" -->
<!-- automd:file src="./benchmarks/results/retrieval-accuracy.md" -->
### Retrieval Accuracy
Accuracy across **3 LLMs** on **159 data retrieval questions**:
Accuracy across **3 LLMs** on **154 data retrieval questions**:
```
gpt-5-nano
toon ████████████████████ 99.4% (158/159)
yaml ███████████████████░ 95.0% (151/159)
csv ██████████████████░░ 92.5% (147/159)
json ██████████████████░░ 92.5% (147/159)
xml ██████████████████░░ 91.2% (145/159)
claude-haiku-4-5
toon ███████████████░░░░░ 75.5% (120/159)
xml ███████████████░░░░░ 75.5% (120/159)
csv ███████████████░░░░░ 75.5% (120/159)
json ███████████████░░░░░ 75.5% (120/159)
yaml ███████████████░░░░░ 74.2% (118/159)
gemini-2.5-flash
xml ██████████████████░░ 91.8% (146/159)
csv █████████████████░░ 86.2% (137/159)
toon █████████████████░░░ 84.9% (135/159)
json ████████████████░░░░ 81.8% (130/159)
yaml ███████████████░░░░ 78.6% (125/159)
xml ██████████████████░░ 90.3% (139/154)
csv █████████████████░░ 89.0% (137/154)
toon █████████████████░░░ 87.0% (134/154)
json ████████████████░░░░ 79.2% (122/154)
yaml ███████████████░░░░ 76.0% (117/154)
gpt-5-nano
toon ███████████████████░ 96.1% (148/154)
csv ██████████████████░░ 90.3% (139/154)
yaml ██████████████████░░ 89.0% (137/154)
json ██████████████████░░ 87.7% (135/154)
xml █████████████████░░░ 83.8% (129/154)
claude-haiku-4-5-20251001
json ██████████░░░░░░░░░░ 48.7% (75/154)
toon ██████████░░░░░░░░░░ 48.1% (74/154)
xml █████████░░░░░░░░░░░ 47.4% (73/154)
yaml █████████░░░░░░░░░░░ 47.4% (73/154)
csv █████████░░░░░░░░░░░ 45.5% (70/154)
```
**Advantage:** TOON achieves **86.6% accuracy** (vs JSON's 83.2%) while using **46.3% fewer tokens**.
**Advantage:** TOON achieves **77.1% accuracy** (vs JSON's 71.9%) while using **46.3% fewer tokens**.
<details>
<summary><strong>Performance by dataset and model</strong></summary>
@@ -248,73 +248,73 @@ gemini-2.5-flash
| Format | Accuracy | Tokens | Correct/Total |
| ------ | -------- | ------ | ------------- |
| `toon` | 87.4% | 2.483 | 152/174 |
| `csv` | 82.8% | 2.337 | 144/174 |
| `yaml` | 83.9% | 4.969 | 146/174 |
| `json` | 83.9% | 6.347 | 146/174 |
| `xml` | 88.5% | 7.314 | 154/174 |
| `csv` | 74.7% | 2,337 | 112/150 |
| `toon` | 76.7% | 2,483 | 115/150 |
| `yaml` | 70.7% | 4,969 | 106/150 |
| `xml` | 77.3% | 7,314 | 116/150 |
| `json` | 69.3% | 6,347 | 104/150 |
##### E-commerce orders with nested structures
| Format | Accuracy | Tokens | Correct/Total |
| ------ | -------- | ------ | ------------- |
| `toon` | 90.9% | 5.967 | 120/132 |
| `csv` | 93.9% | 6.735 | 124/132 |
| `yaml` | 87.1% | 7.328 | 115/132 |
| `json` | 87.9% | 9.694 | 116/132 |
| `xml` | 93.2% | 10.992 | 123/132 |
| `toon` | 80.0% | 5,967 | 96/120 |
| `csv` | 75.8% | 6,735 | 91/120 |
| `yaml` | 74.2% | 7,328 | 89/120 |
| `json` | 79.2% | 9,694 | 95/120 |
| `xml` | 78.3% | 10,992 | 94/120 |
##### Time-series analytics data
| Format | Accuracy | Tokens | Correct/Total |
| ------ | -------- | ------ | ------------- |
| `csv` | 89.7% | 1.393 | 78/87 |
| `toon` | 88.5% | 1.515 | 77/87 |
| `yaml` | 83.9% | 2.938 | 73/87 |
| `json` | 88.5% | 3.665 | 77/87 |
| `xml` | 85.1% | 4.376 | 74/87 |
| `csv` | 75.5% | 1,393 | 77/102 |
| `toon` | 76.5% | 1,515 | 78/102 |
| `yaml` | 74.5% | 2,938 | 76/102 |
| `json` | 76.5% | 3,665 | 78/102 |
| `xml` | 74.5% | 4,376 | 76/102 |
##### Top 100 GitHub repositories
| Format | Accuracy | Tokens | Correct/Total |
| ------ | -------- | ------ | ------------- |
| `toon` | 76.2% | 8.745 | 64/84 |
| `csv` | 69.0% | 8.513 | 58/84 |
| `yaml` | 71.4% | 13.129 | 60/84 |
| `json` | 69.0% | 15.145 | 58/84 |
| `xml` | 71.4% | 17.095 | 60/84 |
| `toon` | 74.4% | 8,745 | 67/90 |
| `csv` | 73.3% | 8,513 | 66/90 |
| `yaml` | 62.2% | 13,129 | 56/90 |
| `json` | 61.1% | 15,145 | 55/90 |
| `xml` | 61.1% | 17,095 | 55/90 |
#### Performance by Model
##### gpt-5-nano
| Format | Accuracy | Correct/Total |
| ------ | -------- | ------------- |
| `toon` | 99.4% | 158/159 |
| `yaml` | 95.0% | 151/159 |
| `csv` | 92.5% | 147/159 |
| `json` | 92.5% | 147/159 |
| `xml` | 91.2% | 145/159 |
##### claude-haiku-4-5
| Format | Accuracy | Correct/Total |
| ------ | -------- | ------------- |
| `toon` | 75.5% | 120/159 |
| `xml` | 75.5% | 120/159 |
| `csv` | 75.5% | 120/159 |
| `json` | 75.5% | 120/159 |
| `yaml` | 74.2% | 118/159 |
##### gemini-2.5-flash
| Format | Accuracy | Correct/Total |
| ------ | -------- | ------------- |
| `xml` | 91.8% | 146/159 |
| `csv` | 86.2% | 137/159 |
| `toon` | 84.9% | 135/159 |
| `json` | 81.8% | 130/159 |
| `yaml` | 78.6% | 125/159 |
| `xml` | 90.3% | 139/154 |
| `csv` | 89.0% | 137/154 |
| `toon` | 87.0% | 134/154 |
| `json` | 79.2% | 122/154 |
| `yaml` | 76.0% | 117/154 |
##### gpt-5-nano
| Format | Accuracy | Correct/Total |
| ------ | -------- | ------------- |
| `toon` | 96.1% | 148/154 |
| `csv` | 90.3% | 139/154 |
| `yaml` | 89.0% | 137/154 |
| `json` | 87.7% | 135/154 |
| `xml` | 83.8% | 129/154 |
##### claude-haiku-4-5-20251001
| Format | Accuracy | Correct/Total |
| ------ | -------- | ------------- |
| `json` | 48.7% | 75/154 |
| `toon` | 48.1% | 74/154 |
| `xml` | 47.4% | 73/154 |
| `yaml` | 47.4% | 73/154 |
| `csv` | 45.5% | 70/154 |
</details>
@@ -336,32 +336,34 @@ Four datasets designed to test different structural patterns:
#### Question Types
159 questions are generated dynamically across three categories:
154 questions are generated dynamically across three categories:
- **Field retrieval (50%)**: Direct value lookups
- **Field retrieval (40%)**: Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)
- Example: "What is Alice's salary?" → `75000`
- Example: "How many items are in order ORD-0042?" → `3`
- Example: "What is the customer name for order ORD-0042?" → `John Doe`
- **Aggregation (25%)**: Counting and summation tasks
- **Aggregation (32%)**: Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)
- Example: "How many employees work in Engineering?" → `17`
- Example: "What is the total revenue across all orders?" → `45123.50`
- Example: "How many employees have salary > 80000?" → `23`
- **Filtering (25%)**: Conditional queries
- **Filtering (28%)**: Multi-condition queries requiring compound logic (AND constraints across fields)
- Example: "How many employees in Sales have salary > 80000?" → `5`
- Example: "How many orders have total > 400?" → `12`
- Example: "How many active employees have more than 10 years of experience?" → `8`
#### Evaluation Process
1. **Format conversion:** Each dataset is converted to all 5 formats (TOON, JSON, YAML, CSV, XML).
1. **Format conversion:** Each dataset is converted to all 5 formats (TOON, CSV, XML, JSON, YAML).
2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer.
4. **Validate with LLM-as-judge**: `gpt-5-nano` validates if the answer is semantically correct (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`).
3. **Validate with LLM-as-judge**: `gpt-5-nano` validates if the answer is semantically correct (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`).
#### Models & Configuration
- **Models tested**: `gpt-5-nano`, `claude-haiku-4-5`, `gemini-2.5-flash`
- **Models tested**: `gemini-2.5-flash`, `gpt-5-nano`, `claude-haiku-4-5-20251001`
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding (GPT-5 tokenizer)
- **Temperature**: 0 (for non-reasoning models)
- **Total evaluations**: 159 questions × 5 formats × 3 models = 2,385 LLM calls
- **Total evaluations**: 154 questions × 5 formats × 3 models = 2,310 LLM calls
</details>