mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 15:24:10 +08:00
feat: decode method (#10)
This commit is contained in:
@@ -159,7 +159,7 @@ Four datasets designed to test different structural patterns:
|
||||
|
||||
#### Evaluation Process
|
||||
|
||||
1. **Format conversion:** Each dataset is converted to all 5 formats (TOON, CSV, XML, JSON, YAML).
|
||||
1. **Format conversion**: Each dataset is converted to all 5 formats (TOON, CSV, XML, JSON, YAML).
|
||||
2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer.
|
||||
3. **Validate with LLM-as-judge**: `gpt-5-nano` validates if the answer is semantically correct (e.g., `50000` = `$50,000`, `Engineering` = `engineering`, `2025-01-01` = `January 1, 2025`).
|
||||
|
||||
|
||||
@@ -248,7 +248,7 @@ ${totalQuestions} questions are generated dynamically across three categories:
|
||||
|
||||
#### Evaluation Process
|
||||
|
||||
1. **Format conversion:** Each dataset is converted to all ${formatCount} formats (${formatResults.map(f => f.format.toUpperCase()).join(', ')}).
|
||||
1. **Format conversion**: Each dataset is converted to all ${formatCount} formats (${formatResults.map(f => f.format.toUpperCase()).join(', ')}).
|
||||
2. **Query LLM**: Each model receives formatted data + question in a prompt and extracts the answer.
|
||||
3. **Validate with LLM-as-judge**: \`gpt-5-nano\` validates if the answer is semantically correct (e.g., \`50000\` = \`$50,000\`, \`Engineering\` = \`engineering\`, \`2025-01-01\` = \`January 1, 2025\`).
|
||||
|
||||
|
||||
Reference in New Issue
Block a user