test: add LLM retrieval accuracy tests

This commit is contained in:
Johann Schopplich
2025-10-27 11:48:33 +01:00
parent eb8f7e28e1
commit 3c840259fe
25 changed files with 21404 additions and 723 deletions

288
benchmarks/src/report.ts Normal file
View File

@@ -0,0 +1,288 @@
/**
* Report generation for TOON benchmarks
*
* Handles:
* - Statistical analysis
* - Twitter-ready markdown report generation with visual elements
* - Per-dataset breakdowns
* - Cost analysis
* - Result file saving
*/
import type { EvaluationResult, FormatResult, Question } from './types'
import * as fsp from 'node:fs/promises'
import * as path from 'node:path'
import { encode } from 'gpt-tokenizer'
import { BENCHMARKS_DIR } from './constants'
import { datasets } from './datasets'
import { models } from './evaluate'
/**
* Calculate per-format statistics from evaluation results
*/
export function calculateFormatResults(
results: EvaluationResult[],
tokenCounts: Record<string, number>,
): FormatResult[] {
const formatNames = [...new Set(results.map(r => r.format))]
return formatNames.map((formatName) => {
const formatResults = results.filter(r => r.format === formatName)
const correctCount = formatResults.filter(r => r.correct).length
const totalCount = formatResults.length
const accuracy = correctCount / totalCount
// Calculate average tokens across all datasets for this format
const avgTokens = Object.entries(tokenCounts)
.filter(([key]) => key.startsWith(`${formatName}-`))
.reduce((sum, [, tokens]) => sum + tokens, 0) / datasets.length
const avgInputTokens = formatResults.reduce((sum, r) => sum + r.inputTokens, 0) / totalCount
const avgLatency = formatResults.reduce((sum, r) => sum + r.latencyMs, 0) / totalCount
return {
format: formatName,
accuracy,
totalTokens: Math.round(avgTokens),
avgInputTokens: Math.round(avgInputTokens),
avgLatency: Math.round(avgLatency),
correctCount,
totalCount,
}
}).sort((a, b) => b.accuracy - a.accuracy)
}
/**
* Generate embeddable markdown report from results
*/
export function generateMarkdownReport(
formatResults: FormatResult[],
results: EvaluationResult[],
questions: Question[],
tokenCounts: Record<string, number>,
): string {
const lines: string[] = [
'### Retrieval Accuracy',
'',
]
const toon = formatResults.find(r => r.format === 'toon')
const json = formatResults.find(r => r.format === 'json')
// Model-by-model breakdown (most interesting result)
const modelCount = Object.keys(models).length
lines.push(`Tested across **${modelCount} ${modelCount === 1 ? 'LLM' : 'LLMs'}** with data retrieval tasks:`, '', '```')
for (const modelName of Object.keys(models)) {
const modelResults = formatResults.map((fr) => {
const modelFormatResults = results.filter(r => r.model === modelName && r.format === fr.format)
const correctCount = modelFormatResults.filter(r => r.correct).length
const totalCount = modelFormatResults.length
const accuracy = totalCount > 0 ? correctCount / totalCount : 0
return {
format: fr.format,
accuracy,
correctCount,
totalCount,
}
}).sort((a, b) => b.accuracy - a.accuracy)
const bestResult = modelResults[0]!
const bar = createTokenBar(bestResult.accuracy, 1, 20)
lines.push(`${modelName.padEnd(20)} ${bar} ${(bestResult.accuracy * 100).toFixed(1)}% accuracy`)
}
lines.push('```', '')
// Summary comparison
if (toon && json) {
const tokenSavings = ((1 - toon.totalTokens / json.totalTokens) * 100).toFixed(1)
lines.push(
`**TOON achieves ${(toon.accuracy * 100).toFixed(1)}% accuracy (vs JSON's ${(json.accuracy * 100).toFixed(1)}%) while using ${tokenSavings}% fewer tokens.**`,
'',
)
}
// Simple format comparison table
lines.push(
'| Format | Accuracy | Average Tokens |',
'| ------ | -------- | -------------- |',
)
for (const result of formatResults) {
lines.push(
`| \`${result.format}\` | ${(result.accuracy * 100).toFixed(1)}% | ${result.totalTokens.toLocaleString()} |`,
)
}
lines.push('', '<details>', '<summary><strong>View detailed breakdown by dataset and model</strong></summary>', '', '#### Performance by Dataset', '')
for (const dataset of datasets) {
lines.push(`##### ${dataset.description}`, '')
const datasetResults = formatResults.map((fr) => {
const datasetFormatResults = results.filter(r => r.questionId.includes(dataset.name) || questions.find(q => q.id === r.questionId)?.dataset === dataset.name)
if (datasetFormatResults.length === 0)
return undefined
const formatDatasetResults = datasetFormatResults.filter(r => r.format === fr.format)
if (formatDatasetResults.length === 0)
return undefined
const correctCount = formatDatasetResults.filter(r => r.correct).length
const totalCount = formatDatasetResults.length
const accuracy = totalCount > 0 ? correctCount / totalCount : 0
// Get token count for this dataset+format
const tokenKey = `${fr.format}-${dataset.name}`
const tokens = tokenCounts[tokenKey] || fr.totalTokens
return {
format: fr.format,
accuracy,
tokens,
correctCount,
totalCount,
}
}).filter(Boolean) as { format: string, accuracy: number, tokens: number, correctCount: number, totalCount: number }[]
if (datasetResults.length === 0)
continue
// Sort by efficiency
datasetResults.sort((a, b) => {
const effA = (a.accuracy ** 2) / (a.tokens / 1000)
const effB = (b.accuracy ** 2) / (b.tokens / 1000)
return effB - effA
})
lines.push(
'| Format | Accuracy | Tokens | Correct/Total |',
'|--------|----------|--------|---------------|',
)
for (const result of datasetResults.slice(0, 6)) {
lines.push(
`| \`${result.format}\` | ${(result.accuracy * 100).toFixed(1)}% | ${result.tokens.toLocaleString()} | ${result.correctCount}/${result.totalCount} |`,
)
}
lines.push('')
}
// Model breakdown
lines.push('', '#### Performance by Model', '')
for (const modelName of Object.keys(models)) {
lines.push(`##### ${modelName}`, '')
const modelResults = formatResults.map((fr) => {
const modelFormatResults = results.filter(r => r.model === modelName && r.format === fr.format)
const correctCount = modelFormatResults.filter(r => r.correct).length
const totalCount = modelFormatResults.length
const accuracy = correctCount / totalCount
return {
format: fr.format,
accuracy,
correctCount,
totalCount,
}
}).sort((a, b) => b.accuracy - a.accuracy)
lines.push('| Format | Accuracy | Correct/Total |', '|--------|----------|---------------|')
for (const result of modelResults) {
lines.push(`| \`${result.format}\` | ${(result.accuracy * 100).toFixed(1)}% | ${result.correctCount}/${result.totalCount} |`)
}
lines.push('')
}
// Methodology
lines.push(
'',
'#### Methodology',
'',
'- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).',
'- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding.',
'- **Question types**: Field retrieval, aggregation, and filtering tasks.',
'- **Real data**: Faker.js-generated datasets + GitHub repositories.',
'',
'</details>',
'',
)
return lines.join('\n')
}
/**
* Calculate token counts for all format+dataset combinations
*/
export function calculateTokenCounts(
formatters: Record<string, (data: any) => string>,
): Record<string, number> {
const tokenCounts: Record<string, number> = {}
for (const [formatName, formatter] of Object.entries(formatters)) {
for (const dataset of datasets) {
const formatted = formatter(dataset.data)
const key = `${formatName}-${dataset.name}`
tokenCounts[key] = encode(formatted).length
}
}
return tokenCounts
}
/**
* Save results to disk
*/
export async function saveResults(
results: EvaluationResult[],
formatResults: FormatResult[],
questions: Question[],
tokenCounts: Record<string, number>,
): Promise<string> {
const resultsDir = path.join(BENCHMARKS_DIR, 'results', 'accuracy')
await fsp.mkdir(resultsDir, { recursive: true })
// Save raw results
await fsp.writeFile(
path.join(resultsDir, 'raw-results.json'),
JSON.stringify(results, undefined, 2),
)
// Save summary
await fsp.writeFile(
path.join(resultsDir, 'summary.json'),
JSON.stringify({
formatResults,
questions: questions.length,
models: Object.keys(models),
datasets: datasets.map(d => ({ name: d.name, description: d.description })),
tokenCounts,
timestamp: new Date().toISOString(),
}, undefined, 2),
)
// Generate markdown report
const report = generateMarkdownReport(formatResults, results, questions, tokenCounts)
await fsp.writeFile(
path.join(resultsDir, 'report.md'),
report,
)
return resultsDir
}
/**
* Generate visual bar chart for token counts
*/
function createTokenBar(tokens: number, maxTokens: number, width = 30): string {
const filled = Math.round((tokens / maxTokens) * width)
const empty = width - filled
return '█'.repeat(filled) + '░'.repeat(empty)
}