mirror of
https://github.com/voson-wang/toon.git
synced 2026-01-29 23:34:10 +08:00
test: add LLM retrieval accuracy tests
This commit is contained in:
39
benchmarks/src/constants.ts
Normal file
39
benchmarks/src/constants.ts
Normal file
@@ -0,0 +1,39 @@
|
||||
import process from 'node:process'
|
||||
import * as url from 'node:url'
|
||||
|
||||
export const ROOT_DIR: string = url.fileURLToPath(new URL('../../', import.meta.url))
|
||||
export const BENCHMARKS_DIR: string = url.fileURLToPath(new URL('../', import.meta.url))
|
||||
|
||||
/**
|
||||
* Benchmark execution configuration
|
||||
*/
|
||||
|
||||
/**
|
||||
* Enable dry run mode for quick testing with limited AI requests
|
||||
*
|
||||
* @remarks
|
||||
* Set via environment variable: `DRY_RUN=true`
|
||||
*/
|
||||
export const DRY_RUN: boolean = process.env.DRY_RUN === 'true'
|
||||
|
||||
/**
|
||||
* Limits applied when DRY_RUN is enabled
|
||||
*/
|
||||
export const DRY_RUN_LIMITS = {
|
||||
/** Maximum number of questions to evaluate */
|
||||
maxQuestions: 10,
|
||||
/** Maximum number of formats to test */
|
||||
maxFormats: undefined as number | undefined,
|
||||
/** Models to use in dry run */
|
||||
allowedModels: [] as string[],
|
||||
}
|
||||
|
||||
/**
|
||||
* Default concurrency for parallel evaluations
|
||||
*/
|
||||
export const DEFAULT_CONCURRENCY = 20
|
||||
|
||||
/**
|
||||
* Delay between API requests to avoid rate limiting (in milliseconds)
|
||||
*/
|
||||
export const RATE_LIMIT_DELAY_MS = 100
|
||||
146
benchmarks/src/datasets.ts
Normal file
146
benchmarks/src/datasets.ts
Normal file
@@ -0,0 +1,146 @@
|
||||
/**
|
||||
* Datasets for TOON benchmarks
|
||||
*
|
||||
* These datasets are designed to test TOON's strengths and weaknesses:
|
||||
* - Tabular: Uniform records (TOON optimal)
|
||||
* - Nested: Complex structures with nested objects
|
||||
* - Analytics: Time-series data
|
||||
*/
|
||||
|
||||
import type { Dataset } from './types'
|
||||
import { faker } from '@faker-js/faker'
|
||||
import githubRepos from '../data/github-repos.json' with { type: 'json' }
|
||||
|
||||
// Seed for reproducibility
|
||||
faker.seed(12345)
|
||||
|
||||
/**
|
||||
* Tabular dataset: 100 uniform employee records
|
||||
*
|
||||
* @remarks
|
||||
* Tests TOON's tabular array format
|
||||
*/
|
||||
const departments = ['Engineering', 'Sales', 'Marketing', 'HR', 'Operations', 'Finance']
|
||||
const tabularDataset: Dataset = {
|
||||
name: 'tabular',
|
||||
description: 'Uniform employee records (TOON optimal format)',
|
||||
data: {
|
||||
employees: Array.from({ length: 100 }, (_, i) => {
|
||||
const yearsExp = faker.number.int({ min: 1, max: 20 })
|
||||
return {
|
||||
id: i + 1,
|
||||
name: faker.person.fullName(),
|
||||
email: faker.internet.email().toLowerCase(),
|
||||
department: departments[i % departments.length]!,
|
||||
salary: faker.number.int({ min: 45000, max: 150000 }),
|
||||
yearsExperience: yearsExp,
|
||||
active: faker.datatype.boolean(0.8), // 80% active
|
||||
}
|
||||
}),
|
||||
},
|
||||
}
|
||||
|
||||
/**
|
||||
* Nested dataset: 50 e-commerce orders with nested structures
|
||||
*
|
||||
* @remarks
|
||||
* Tests TOON's handling of complex nested objects
|
||||
*/
|
||||
const productNames = ['Wireless Mouse', 'USB Cable', 'Laptop Stand', 'Keyboard', 'Webcam', 'Headphones', 'Monitor', 'Desk Lamp']
|
||||
const statuses = ['pending', 'processing', 'shipped', 'delivered', 'cancelled']
|
||||
|
||||
const nestedDataset: Dataset = {
|
||||
name: 'nested',
|
||||
description: 'E-commerce orders with nested structures',
|
||||
data: {
|
||||
orders: Array.from({ length: 50 }, (_, i) => {
|
||||
const customerId = (i % 20) + 1
|
||||
const itemCount = faker.number.int({ min: 1, max: 4 })
|
||||
|
||||
const items = Array.from({ length: itemCount }, (_, j) => {
|
||||
const price = faker.number.float({ min: 9.99, max: 199.99, fractionDigits: 2 })
|
||||
const quantity = faker.number.int({ min: 1, max: 5 })
|
||||
return {
|
||||
sku: `SKU-${faker.string.alphanumeric({ length: 6 }).toUpperCase()}`,
|
||||
name: productNames[j % productNames.length]!,
|
||||
quantity,
|
||||
price,
|
||||
}
|
||||
})
|
||||
|
||||
const total = Number(items.reduce((sum, item) => sum + (item.price * item.quantity), 0).toFixed(2))
|
||||
|
||||
return {
|
||||
orderId: `ORD-${String(i + 1).padStart(4, '0')}`,
|
||||
customer: {
|
||||
id: customerId,
|
||||
name: faker.person.fullName(),
|
||||
email: faker.internet.email().toLowerCase(),
|
||||
},
|
||||
items,
|
||||
total,
|
||||
status: statuses[i % statuses.length]!,
|
||||
orderDate: faker.date.recent({ days: 90 }).toISOString().split('T')[0],
|
||||
}
|
||||
}),
|
||||
},
|
||||
}
|
||||
|
||||
/**
|
||||
* Analytics dataset: 60 days of time-series metrics
|
||||
*
|
||||
* @remarks
|
||||
* Tests TOON's handling of numeric data and date fields
|
||||
*/
|
||||
const analyticsDataset: Dataset = {
|
||||
name: 'analytics',
|
||||
description: 'Time-series analytics data',
|
||||
data: {
|
||||
metrics: Array.from({ length: 60 }, (_, i) => {
|
||||
const date = new Date('2025-01-01')
|
||||
date.setDate(date.getDate() + i)
|
||||
|
||||
// Simulate realistic web traffic with some variation
|
||||
const baseViews = 5000
|
||||
const weekendMultiplier = date.getDay() === 0 || date.getDay() === 6 ? 0.7 : 1.0
|
||||
const views = Math.round(baseViews * weekendMultiplier + faker.number.int({ min: -1000, max: 3000 }))
|
||||
const clicks = Math.round(views * faker.number.float({ min: 0.02, max: 0.08 }))
|
||||
const conversions = Math.round(clicks * faker.number.float({ min: 0.05, max: 0.15 }))
|
||||
const avgOrderValue = faker.number.float({ min: 49.99, max: 299.99 })
|
||||
const revenue = Number((conversions * avgOrderValue).toFixed(2))
|
||||
|
||||
return {
|
||||
date: date.toISOString().split('T')[0]!,
|
||||
views,
|
||||
clicks,
|
||||
conversions,
|
||||
revenue,
|
||||
bounceRate: faker.number.float({ min: 0.3, max: 0.7, fractionDigits: 2 }),
|
||||
}
|
||||
}),
|
||||
},
|
||||
}
|
||||
|
||||
/**
|
||||
* GitHub dataset: Popular repositories
|
||||
*
|
||||
* @remarks
|
||||
* Tests TOON's tabular format with real-world data
|
||||
*/
|
||||
const githubDataset: Dataset = {
|
||||
name: 'github',
|
||||
description: 'Popular GitHub repositories',
|
||||
data: {
|
||||
repositories: githubRepos.slice(0, 200),
|
||||
},
|
||||
}
|
||||
|
||||
/**
|
||||
* All datasets used in the benchmark
|
||||
*/
|
||||
export const datasets: Dataset[] = [
|
||||
tabularDataset,
|
||||
nestedDataset,
|
||||
analyticsDataset,
|
||||
githubDataset,
|
||||
]
|
||||
133
benchmarks/src/evaluate.ts
Normal file
133
benchmarks/src/evaluate.ts
Normal file
@@ -0,0 +1,133 @@
|
||||
/**
|
||||
* LLM evaluation logic for TOON benchmarks
|
||||
*
|
||||
* Handles:
|
||||
* - Model configuration
|
||||
* - Question evaluation with LLMs
|
||||
* - Answer validation using LLM-as-judge
|
||||
*/
|
||||
|
||||
import type { LanguageModelV2 } from '@ai-sdk/provider'
|
||||
import type { EvaluationResult, Question } from './types'
|
||||
import { setTimeout } from 'node:timers/promises'
|
||||
import { anthropic } from '@ai-sdk/anthropic'
|
||||
import { openai } from '@ai-sdk/openai'
|
||||
import { generateText } from 'ai'
|
||||
import { consola } from 'consola'
|
||||
import { RATE_LIMIT_DELAY_MS } from './constants'
|
||||
|
||||
/**
|
||||
* Models used for evaluation
|
||||
*/
|
||||
export const models: Record<string, LanguageModelV2> = {
|
||||
'gpt-4o-mini': openai('gpt-4o-mini'),
|
||||
'claude-haiku-4-5': anthropic('claude-haiku-4-5-20251001'),
|
||||
}
|
||||
|
||||
/**
|
||||
* Validate an answer using LLM-as-judge approach
|
||||
* More robust than string matching for LLM outputs
|
||||
*/
|
||||
export async function validateAnswer(
|
||||
actual: string,
|
||||
expected: string,
|
||||
question: string,
|
||||
): Promise<boolean> {
|
||||
const prompt = `You are validating answers to questions about structured data.
|
||||
|
||||
Question: ${question}
|
||||
Expected answer: ${expected}
|
||||
Actual answer: ${actual}
|
||||
|
||||
Is the actual answer correct? Consider:
|
||||
- Exact matches are correct
|
||||
- Semantically equivalent answers are correct (e.g., "50000" vs "$50,000" vs "50000 dollars")
|
||||
- Minor formatting differences are acceptable
|
||||
- Case-insensitive comparison for text
|
||||
|
||||
Respond with only "YES" or "NO".`
|
||||
|
||||
try {
|
||||
const { text } = await generateText({
|
||||
model: models['gpt-4o-mini']!,
|
||||
prompt,
|
||||
temperature: 0,
|
||||
maxOutputTokens: 16,
|
||||
})
|
||||
|
||||
await setTimeout(RATE_LIMIT_DELAY_MS)
|
||||
|
||||
return text.trim().toUpperCase() === 'YES'
|
||||
}
|
||||
catch (error) {
|
||||
consola.error('Validation error:', error)
|
||||
// Fallback to simple string comparison
|
||||
return actual.toLowerCase().trim() === expected.toLowerCase().trim()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Evaluate a single question with a specific format and model
|
||||
*/
|
||||
export async function evaluateQuestion(
|
||||
question: Question,
|
||||
formatName: string,
|
||||
formattedData: string,
|
||||
model: any,
|
||||
modelName: string,
|
||||
): Promise<EvaluationResult> {
|
||||
const prompt = `Given the following data in ${formatName} format:
|
||||
|
||||
\`\`\`
|
||||
${formattedData}
|
||||
\`\`\`
|
||||
|
||||
Question: ${question.prompt}
|
||||
|
||||
Provide only the direct answer, without any additional explanation or formatting.`
|
||||
|
||||
const startTime = Date.now()
|
||||
|
||||
try {
|
||||
const { text, usage } = await generateText({
|
||||
model,
|
||||
prompt,
|
||||
temperature: 0,
|
||||
maxOutputTokens: 50,
|
||||
})
|
||||
|
||||
await setTimeout(RATE_LIMIT_DELAY_MS)
|
||||
|
||||
const latencyMs = Date.now() - startTime
|
||||
const correct = await validateAnswer(text.trim(), question.groundTruth, question.prompt)
|
||||
|
||||
return {
|
||||
questionId: question.id,
|
||||
format: formatName,
|
||||
model: modelName,
|
||||
expected: question.groundTruth,
|
||||
actual: text.trim(),
|
||||
correct,
|
||||
inputTokens: usage.inputTokens ?? 0,
|
||||
outputTokens: usage.outputTokens ?? 0,
|
||||
latencyMs,
|
||||
}
|
||||
}
|
||||
catch (error) {
|
||||
consola.error(`Error evaluating ${question.id} with ${formatName}/${modelName}:`, error)
|
||||
|
||||
await setTimeout(RATE_LIMIT_DELAY_MS)
|
||||
|
||||
return {
|
||||
questionId: question.id,
|
||||
format: formatName,
|
||||
model: modelName,
|
||||
expected: question.groundTruth,
|
||||
actual: '',
|
||||
correct: false,
|
||||
inputTokens: 0,
|
||||
outputTokens: 0,
|
||||
latencyMs: Date.now() - startTime,
|
||||
}
|
||||
}
|
||||
}
|
||||
90
benchmarks/src/formatters.ts
Normal file
90
benchmarks/src/formatters.ts
Normal file
@@ -0,0 +1,90 @@
|
||||
/**
|
||||
* Format converters for TOON benchmarks
|
||||
*
|
||||
* Converts data to different formats:
|
||||
* - JSON
|
||||
* - TOON
|
||||
* - CSV
|
||||
* - Markdown key-value
|
||||
* - YAML
|
||||
*/
|
||||
|
||||
import { stringify as stringifyCSV } from 'csv-stringify/sync'
|
||||
import { stringify as stringifyYAML } from 'yaml'
|
||||
import { encode as encodeToon } from '../../src/index'
|
||||
|
||||
export const formatters = {
|
||||
'json': (data: unknown): string => JSON.stringify(data, undefined, 2),
|
||||
'toon': (data: unknown): string => encodeToon(data),
|
||||
'csv': (data: unknown): string => toCSV(data),
|
||||
'markdown-kv': (data: unknown): string => toMarkdownKV(data),
|
||||
'yaml': (data: unknown): string => stringifyYAML(data),
|
||||
}
|
||||
|
||||
function toCSV(data: unknown): string {
|
||||
const sections: string[] = []
|
||||
|
||||
// Handle top-level object with arrays
|
||||
if (typeof data === 'object' && data !== null && !Array.isArray(data)) {
|
||||
for (const [key, value] of Object.entries(data)) {
|
||||
if (Array.isArray(value) && value.length > 0) {
|
||||
sections.push(`# ${key}`)
|
||||
sections.push(stringifyCSV(value, { header: true }))
|
||||
}
|
||||
}
|
||||
return sections.join('\n').trim()
|
||||
}
|
||||
|
||||
// Root-level array
|
||||
if (Array.isArray(data) && data.length > 0) {
|
||||
return stringifyCSV(data, { header: true }).trim()
|
||||
}
|
||||
|
||||
return ''
|
||||
}
|
||||
|
||||
function toMarkdownKV(data: unknown, indent = 0): string {
|
||||
const spaces = ' '.repeat(indent)
|
||||
const lines: string[] = []
|
||||
|
||||
if (Array.isArray(data)) {
|
||||
data.forEach((item, i) => {
|
||||
if (typeof item === 'object' && item !== null && !Array.isArray(item)) {
|
||||
Object.entries(item).forEach(([key, value]) => {
|
||||
if (typeof value === 'object' && value !== null) {
|
||||
lines.push(`${spaces}**${key}**:`)
|
||||
lines.push(toMarkdownKV(value, indent + 1))
|
||||
}
|
||||
else {
|
||||
lines.push(`${spaces}**${key}**: ${value}`)
|
||||
}
|
||||
})
|
||||
if (i < data.length - 1)
|
||||
lines.push('')
|
||||
}
|
||||
else {
|
||||
lines.push(`${spaces}- ${item}`)
|
||||
}
|
||||
})
|
||||
}
|
||||
else if (typeof data === 'object' && data !== null) {
|
||||
Object.entries(data).forEach(([key, value]) => {
|
||||
if (Array.isArray(value)) {
|
||||
lines.push(`${spaces}**${key}**:`)
|
||||
lines.push(toMarkdownKV(value, indent + 1))
|
||||
}
|
||||
else if (typeof value === 'object' && value !== null) {
|
||||
lines.push(`${spaces}**${key}**:`)
|
||||
lines.push(toMarkdownKV(value, indent + 1))
|
||||
}
|
||||
else {
|
||||
lines.push(`${spaces}**${key}**: ${value}`)
|
||||
}
|
||||
})
|
||||
}
|
||||
else {
|
||||
lines.push(`${spaces}${data}`)
|
||||
}
|
||||
|
||||
return lines.join('\n')
|
||||
}
|
||||
398
benchmarks/src/questions.ts
Normal file
398
benchmarks/src/questions.ts
Normal file
@@ -0,0 +1,398 @@
|
||||
/* eslint-disable no-console */
|
||||
|
||||
/**
|
||||
* Question generation for TOON benchmarks
|
||||
*
|
||||
* Generates ~200 questions across different types:
|
||||
* - Field retrieval (50%): "What is X's Y?"
|
||||
* - Aggregation (25%): "How many X have Y?"
|
||||
* - Filtering (25%): "List/count X where Y"
|
||||
*
|
||||
* Questions are generated dynamically based on actual data values
|
||||
*/
|
||||
|
||||
import type { Question } from './types'
|
||||
import { datasets } from './datasets'
|
||||
|
||||
/**
|
||||
* Generate all questions from datasets
|
||||
*/
|
||||
export function generateQuestions(): Question[] {
|
||||
const questions: Question[] = []
|
||||
let idCounter = 1
|
||||
|
||||
// Get datasets
|
||||
const tabular = datasets.find(d => d.name === 'tabular')?.data.employees as any[] || []
|
||||
const nested = datasets.find(d => d.name === 'nested')?.data.orders as any[] || []
|
||||
const analytics = datasets.find(d => d.name === 'analytics')?.data.metrics as any[] || []
|
||||
const github = datasets.find(d => d.name === 'github')?.data.repositories as any[] || []
|
||||
|
||||
// ========================================
|
||||
// TABULAR DATASET QUESTIONS (70 questions)
|
||||
// ========================================
|
||||
|
||||
if (tabular.length > 0) {
|
||||
// Field retrieval: specific employees (40 questions)
|
||||
for (let i = 0; i < Math.min(40, tabular.length); i++) {
|
||||
const emp = tabular[i * 2] || tabular[i]
|
||||
if (!emp)
|
||||
continue
|
||||
|
||||
// Alternate between different field types
|
||||
if (i % 3 === 0) {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `What is the salary of ${emp.name}?`,
|
||||
groundTruth: String(emp.salary),
|
||||
type: 'field-retrieval',
|
||||
dataset: 'tabular',
|
||||
})
|
||||
}
|
||||
else if (i % 3 === 1) {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `What department does ${emp.name} work in?`,
|
||||
groundTruth: emp.department,
|
||||
type: 'field-retrieval',
|
||||
dataset: 'tabular',
|
||||
})
|
||||
}
|
||||
else {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `What is the email address of ${emp.name}?`,
|
||||
groundTruth: emp.email,
|
||||
type: 'field-retrieval',
|
||||
dataset: 'tabular',
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Aggregation: count by department
|
||||
const departments = [...new Set(tabular.map((e: any) => e.department))]
|
||||
for (const dept of departments.slice(0, 6)) {
|
||||
const count = tabular.filter((e: any) => e.department === dept).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many employees work in ${dept}?`,
|
||||
groundTruth: String(count),
|
||||
type: 'aggregation',
|
||||
dataset: 'tabular',
|
||||
})
|
||||
}
|
||||
|
||||
// Aggregation: salary ranges (4 questions)
|
||||
const salaryThresholds = [60000, 80000, 100000, 120000]
|
||||
for (const threshold of salaryThresholds) {
|
||||
const count = tabular.filter((e: any) => e.salary > threshold).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many employees have a salary greater than ${threshold}?`,
|
||||
groundTruth: String(count),
|
||||
type: 'aggregation',
|
||||
dataset: 'tabular',
|
||||
})
|
||||
}
|
||||
|
||||
// Filtering: active status
|
||||
const activeCount = tabular.filter((e: any) => e.active).length
|
||||
const inactiveCount = tabular.filter((e: any) => !e.active).length
|
||||
questions.push(
|
||||
{
|
||||
id: `q${idCounter++}`,
|
||||
prompt: 'How many employees are active?',
|
||||
groundTruth: String(activeCount),
|
||||
type: 'filtering',
|
||||
dataset: 'tabular',
|
||||
},
|
||||
{
|
||||
id: `q${idCounter++}`,
|
||||
prompt: 'How many employees are inactive?',
|
||||
groundTruth: String(inactiveCount),
|
||||
type: 'filtering',
|
||||
dataset: 'tabular',
|
||||
},
|
||||
)
|
||||
|
||||
// Complex filtering: multi-condition (8 questions)
|
||||
for (const dept of departments.slice(0, 4)) {
|
||||
const count = tabular.filter((e: any) => e.department === dept && e.salary > 80000).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many employees in ${dept} have a salary greater than 80000?`,
|
||||
groundTruth: String(count),
|
||||
type: 'filtering',
|
||||
dataset: 'tabular',
|
||||
})
|
||||
}
|
||||
|
||||
for (const exp of [5, 10]) {
|
||||
const count = tabular.filter((e: any) => e.yearsExperience > exp && e.active).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many active employees have more than ${exp} years of experience?`,
|
||||
groundTruth: String(count),
|
||||
type: 'filtering',
|
||||
dataset: 'tabular',
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// NESTED DATASET QUESTIONS (50 questions)
|
||||
// ========================================
|
||||
|
||||
if (nested.length > 0) {
|
||||
// Field retrieval: order totals (20 questions)
|
||||
for (let i = 0; i < Math.min(20, nested.length); i++) {
|
||||
const order = nested[i * 2] || nested[i]
|
||||
if (!order)
|
||||
continue
|
||||
|
||||
if (i % 2 === 0) {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `What is the total amount for order ${order.orderId}?`,
|
||||
groundTruth: String(order.total),
|
||||
type: 'field-retrieval',
|
||||
dataset: 'nested',
|
||||
})
|
||||
}
|
||||
else {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `What is the status of order ${order.orderId}?`,
|
||||
groundTruth: order.status,
|
||||
type: 'field-retrieval',
|
||||
dataset: 'nested',
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Field retrieval: customer info (15 questions)
|
||||
for (let i = 0; i < Math.min(15, nested.length); i++) {
|
||||
const order = nested[i * 3] || nested[i]
|
||||
if (!order)
|
||||
continue
|
||||
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `What is the customer name for order ${order.orderId}?`,
|
||||
groundTruth: order.customer.name,
|
||||
type: 'field-retrieval',
|
||||
dataset: 'nested',
|
||||
})
|
||||
}
|
||||
|
||||
// Aggregation: count by status
|
||||
const statuses = [...new Set(nested.map((o: any) => o.status))]
|
||||
for (const status of statuses) {
|
||||
const count = nested.filter((o: any) => o.status === status).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many orders have status "${status}"?`,
|
||||
groundTruth: String(count),
|
||||
type: 'filtering',
|
||||
dataset: 'nested',
|
||||
})
|
||||
}
|
||||
|
||||
// Aggregation: total revenue
|
||||
const totalRevenue = nested.reduce((sum: number, o: any) => sum + o.total, 0)
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: 'What is the total revenue across all orders?',
|
||||
groundTruth: String(totalRevenue.toFixed(2)),
|
||||
type: 'aggregation',
|
||||
dataset: 'nested',
|
||||
})
|
||||
|
||||
// Filtering: high-value orders (3 questions)
|
||||
const highValueThresholds = [200, 400, 600]
|
||||
for (const threshold of highValueThresholds) {
|
||||
const count = nested.filter((o: any) => o.total > threshold).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many orders have a total greater than ${threshold}?`,
|
||||
groundTruth: String(count),
|
||||
type: 'filtering',
|
||||
dataset: 'nested',
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// ANALYTICS DATASET QUESTIONS (40 questions)
|
||||
// ========================================
|
||||
|
||||
if (analytics.length > 0) {
|
||||
// Field retrieval: specific dates (20 questions)
|
||||
for (let i = 0; i < Math.min(20, analytics.length); i++) {
|
||||
const metric = analytics[i * 3] || analytics[i]
|
||||
if (!metric)
|
||||
continue
|
||||
|
||||
if (i % 2 === 0) {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many views were recorded on ${metric.date}?`,
|
||||
groundTruth: String(metric.views),
|
||||
type: 'field-retrieval',
|
||||
dataset: 'analytics',
|
||||
})
|
||||
}
|
||||
else {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `What was the revenue on ${metric.date}?`,
|
||||
groundTruth: String(metric.revenue),
|
||||
type: 'field-retrieval',
|
||||
dataset: 'analytics',
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Aggregation: totals (4 questions)
|
||||
const totalViews = analytics.reduce((sum: number, m: any) => sum + m.views, 0)
|
||||
const totalRevenue = analytics.reduce((sum: number, m: any) => sum + m.revenue, 0)
|
||||
const totalConversions = analytics.reduce((sum: number, m: any) => sum + m.conversions, 0)
|
||||
|
||||
questions.push(
|
||||
{
|
||||
id: `q${idCounter++}`,
|
||||
prompt: 'What is the total number of views across all dates?',
|
||||
groundTruth: String(totalViews),
|
||||
type: 'aggregation',
|
||||
dataset: 'analytics',
|
||||
},
|
||||
{
|
||||
id: `q${idCounter++}`,
|
||||
prompt: 'What is the total revenue across all dates?',
|
||||
groundTruth: String(totalRevenue.toFixed(2)),
|
||||
type: 'aggregation',
|
||||
dataset: 'analytics',
|
||||
},
|
||||
{
|
||||
id: `q${idCounter++}`,
|
||||
prompt: 'What is the total number of conversions across all dates?',
|
||||
groundTruth: String(totalConversions),
|
||||
type: 'aggregation',
|
||||
dataset: 'analytics',
|
||||
},
|
||||
)
|
||||
|
||||
// Filtering: high-performing days (10 questions)
|
||||
const viewThresholds = [5000, 6000, 7000]
|
||||
for (const threshold of viewThresholds) {
|
||||
const count = analytics.filter((m: any) => m.views > threshold).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many days had more than ${threshold} views?`,
|
||||
groundTruth: String(count),
|
||||
type: 'filtering',
|
||||
dataset: 'analytics',
|
||||
})
|
||||
}
|
||||
|
||||
const conversionThresholds = [10, 20, 30]
|
||||
for (const threshold of conversionThresholds) {
|
||||
const count = analytics.filter((m: any) => m.conversions > threshold).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many days had more than ${threshold} conversions?`,
|
||||
groundTruth: String(count),
|
||||
type: 'filtering',
|
||||
dataset: 'analytics',
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// ========================================
|
||||
// GITHUB DATASET QUESTIONS (40 questions)
|
||||
// ========================================
|
||||
|
||||
if (github.length > 0) {
|
||||
// Field retrieval: specific repos (20 questions)
|
||||
for (let i = 0; i < Math.min(20, github.length); i++) {
|
||||
const repo = github[i * 10] || github[i]
|
||||
if (!repo)
|
||||
continue
|
||||
|
||||
if (i % 2 === 0) {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many stars does ${repo.owner}/${repo.name} have?`,
|
||||
groundTruth: String(repo.stars),
|
||||
type: 'field-retrieval',
|
||||
dataset: 'github',
|
||||
})
|
||||
}
|
||||
else {
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many forks does ${repo.owner}/${repo.name} have?`,
|
||||
groundTruth: String(repo.forks),
|
||||
type: 'field-retrieval',
|
||||
dataset: 'github',
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Aggregation: count by owner (5 questions)
|
||||
const owners = [...new Set(github.map((r: any) => r.owner))]
|
||||
for (const owner of owners.slice(0, 5)) {
|
||||
const count = github.filter((r: any) => r.owner === owner).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many repositories does ${owner} have in the dataset?`,
|
||||
groundTruth: String(count),
|
||||
type: 'aggregation',
|
||||
dataset: 'github',
|
||||
})
|
||||
}
|
||||
|
||||
// Aggregation: total stars
|
||||
const totalStars = github.reduce((sum: number, r: any) => sum + r.stars, 0)
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: 'What is the total number of stars across all repositories?',
|
||||
groundTruth: String(totalStars),
|
||||
type: 'aggregation',
|
||||
dataset: 'github',
|
||||
})
|
||||
|
||||
// Filtering: popular repos (8 questions)
|
||||
const starThresholds = [10000, 50000, 100000]
|
||||
for (const threshold of starThresholds) {
|
||||
const count = github.filter((r: any) => r.stars > threshold).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many repositories have more than ${threshold} stars?`,
|
||||
groundTruth: String(count),
|
||||
type: 'filtering',
|
||||
dataset: 'github',
|
||||
})
|
||||
}
|
||||
|
||||
const forkThresholds = [1000, 5000, 10000]
|
||||
for (const threshold of forkThresholds) {
|
||||
const count = github.filter((r: any) => r.forks > threshold).length
|
||||
questions.push({
|
||||
id: `q${idCounter++}`,
|
||||
prompt: `How many repositories have more than ${threshold} forks?`,
|
||||
groundTruth: String(count),
|
||||
type: 'filtering',
|
||||
dataset: 'github',
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
console.log(`📊 Question breakdown:`)
|
||||
console.log(` Tabular: ${questions.filter(q => q.dataset === 'tabular').length}`)
|
||||
console.log(` Nested: ${questions.filter(q => q.dataset === 'nested').length}`)
|
||||
console.log(` Analytics: ${questions.filter(q => q.dataset === 'analytics').length}`)
|
||||
console.log(` GitHub: ${questions.filter(q => q.dataset === 'github').length}`)
|
||||
console.log(` Total: ${questions.length}`)
|
||||
|
||||
return questions
|
||||
}
|
||||
288
benchmarks/src/report.ts
Normal file
288
benchmarks/src/report.ts
Normal file
@@ -0,0 +1,288 @@
|
||||
/**
|
||||
* Report generation for TOON benchmarks
|
||||
*
|
||||
* Handles:
|
||||
* - Statistical analysis
|
||||
* - Twitter-ready markdown report generation with visual elements
|
||||
* - Per-dataset breakdowns
|
||||
* - Cost analysis
|
||||
* - Result file saving
|
||||
*/
|
||||
|
||||
import type { EvaluationResult, FormatResult, Question } from './types'
|
||||
import * as fsp from 'node:fs/promises'
|
||||
import * as path from 'node:path'
|
||||
import { encode } from 'gpt-tokenizer'
|
||||
import { BENCHMARKS_DIR } from './constants'
|
||||
import { datasets } from './datasets'
|
||||
import { models } from './evaluate'
|
||||
|
||||
/**
|
||||
* Calculate per-format statistics from evaluation results
|
||||
*/
|
||||
export function calculateFormatResults(
|
||||
results: EvaluationResult[],
|
||||
tokenCounts: Record<string, number>,
|
||||
): FormatResult[] {
|
||||
const formatNames = [...new Set(results.map(r => r.format))]
|
||||
|
||||
return formatNames.map((formatName) => {
|
||||
const formatResults = results.filter(r => r.format === formatName)
|
||||
const correctCount = formatResults.filter(r => r.correct).length
|
||||
const totalCount = formatResults.length
|
||||
const accuracy = correctCount / totalCount
|
||||
|
||||
// Calculate average tokens across all datasets for this format
|
||||
const avgTokens = Object.entries(tokenCounts)
|
||||
.filter(([key]) => key.startsWith(`${formatName}-`))
|
||||
.reduce((sum, [, tokens]) => sum + tokens, 0) / datasets.length
|
||||
|
||||
const avgInputTokens = formatResults.reduce((sum, r) => sum + r.inputTokens, 0) / totalCount
|
||||
const avgLatency = formatResults.reduce((sum, r) => sum + r.latencyMs, 0) / totalCount
|
||||
|
||||
return {
|
||||
format: formatName,
|
||||
accuracy,
|
||||
totalTokens: Math.round(avgTokens),
|
||||
avgInputTokens: Math.round(avgInputTokens),
|
||||
avgLatency: Math.round(avgLatency),
|
||||
correctCount,
|
||||
totalCount,
|
||||
}
|
||||
}).sort((a, b) => b.accuracy - a.accuracy)
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate embeddable markdown report from results
|
||||
*/
|
||||
export function generateMarkdownReport(
|
||||
formatResults: FormatResult[],
|
||||
results: EvaluationResult[],
|
||||
questions: Question[],
|
||||
tokenCounts: Record<string, number>,
|
||||
): string {
|
||||
const lines: string[] = [
|
||||
'### Retrieval Accuracy',
|
||||
'',
|
||||
]
|
||||
|
||||
const toon = formatResults.find(r => r.format === 'toon')
|
||||
const json = formatResults.find(r => r.format === 'json')
|
||||
|
||||
// Model-by-model breakdown (most interesting result)
|
||||
const modelCount = Object.keys(models).length
|
||||
lines.push(`Tested across **${modelCount} ${modelCount === 1 ? 'LLM' : 'LLMs'}** with data retrieval tasks:`, '', '```')
|
||||
|
||||
for (const modelName of Object.keys(models)) {
|
||||
const modelResults = formatResults.map((fr) => {
|
||||
const modelFormatResults = results.filter(r => r.model === modelName && r.format === fr.format)
|
||||
const correctCount = modelFormatResults.filter(r => r.correct).length
|
||||
const totalCount = modelFormatResults.length
|
||||
const accuracy = totalCount > 0 ? correctCount / totalCount : 0
|
||||
|
||||
return {
|
||||
format: fr.format,
|
||||
accuracy,
|
||||
correctCount,
|
||||
totalCount,
|
||||
}
|
||||
}).sort((a, b) => b.accuracy - a.accuracy)
|
||||
|
||||
const bestResult = modelResults[0]!
|
||||
const bar = createTokenBar(bestResult.accuracy, 1, 20)
|
||||
|
||||
lines.push(`${modelName.padEnd(20)} ${bar} ${(bestResult.accuracy * 100).toFixed(1)}% accuracy`)
|
||||
}
|
||||
|
||||
lines.push('```', '')
|
||||
|
||||
// Summary comparison
|
||||
if (toon && json) {
|
||||
const tokenSavings = ((1 - toon.totalTokens / json.totalTokens) * 100).toFixed(1)
|
||||
lines.push(
|
||||
`**TOON achieves ${(toon.accuracy * 100).toFixed(1)}% accuracy (vs JSON's ${(json.accuracy * 100).toFixed(1)}%) while using ${tokenSavings}% fewer tokens.**`,
|
||||
'',
|
||||
)
|
||||
}
|
||||
|
||||
// Simple format comparison table
|
||||
lines.push(
|
||||
'| Format | Accuracy | Average Tokens |',
|
||||
'| ------ | -------- | -------------- |',
|
||||
)
|
||||
|
||||
for (const result of formatResults) {
|
||||
lines.push(
|
||||
`| \`${result.format}\` | ${(result.accuracy * 100).toFixed(1)}% | ${result.totalTokens.toLocaleString()} |`,
|
||||
)
|
||||
}
|
||||
|
||||
lines.push('', '<details>', '<summary><strong>View detailed breakdown by dataset and model</strong></summary>', '', '#### Performance by Dataset', '')
|
||||
|
||||
for (const dataset of datasets) {
|
||||
lines.push(`##### ${dataset.description}`, '')
|
||||
|
||||
const datasetResults = formatResults.map((fr) => {
|
||||
const datasetFormatResults = results.filter(r => r.questionId.includes(dataset.name) || questions.find(q => q.id === r.questionId)?.dataset === dataset.name)
|
||||
if (datasetFormatResults.length === 0)
|
||||
return undefined
|
||||
|
||||
const formatDatasetResults = datasetFormatResults.filter(r => r.format === fr.format)
|
||||
if (formatDatasetResults.length === 0)
|
||||
return undefined
|
||||
|
||||
const correctCount = formatDatasetResults.filter(r => r.correct).length
|
||||
const totalCount = formatDatasetResults.length
|
||||
const accuracy = totalCount > 0 ? correctCount / totalCount : 0
|
||||
|
||||
// Get token count for this dataset+format
|
||||
const tokenKey = `${fr.format}-${dataset.name}`
|
||||
const tokens = tokenCounts[tokenKey] || fr.totalTokens
|
||||
|
||||
return {
|
||||
format: fr.format,
|
||||
accuracy,
|
||||
tokens,
|
||||
correctCount,
|
||||
totalCount,
|
||||
}
|
||||
}).filter(Boolean) as { format: string, accuracy: number, tokens: number, correctCount: number, totalCount: number }[]
|
||||
|
||||
if (datasetResults.length === 0)
|
||||
continue
|
||||
|
||||
// Sort by efficiency
|
||||
datasetResults.sort((a, b) => {
|
||||
const effA = (a.accuracy ** 2) / (a.tokens / 1000)
|
||||
const effB = (b.accuracy ** 2) / (b.tokens / 1000)
|
||||
return effB - effA
|
||||
})
|
||||
|
||||
lines.push(
|
||||
'| Format | Accuracy | Tokens | Correct/Total |',
|
||||
'|--------|----------|--------|---------------|',
|
||||
)
|
||||
|
||||
for (const result of datasetResults.slice(0, 6)) {
|
||||
lines.push(
|
||||
`| \`${result.format}\` | ${(result.accuracy * 100).toFixed(1)}% | ${result.tokens.toLocaleString()} | ${result.correctCount}/${result.totalCount} |`,
|
||||
)
|
||||
}
|
||||
|
||||
lines.push('')
|
||||
}
|
||||
|
||||
// Model breakdown
|
||||
lines.push('', '#### Performance by Model', '')
|
||||
|
||||
for (const modelName of Object.keys(models)) {
|
||||
lines.push(`##### ${modelName}`, '')
|
||||
|
||||
const modelResults = formatResults.map((fr) => {
|
||||
const modelFormatResults = results.filter(r => r.model === modelName && r.format === fr.format)
|
||||
const correctCount = modelFormatResults.filter(r => r.correct).length
|
||||
const totalCount = modelFormatResults.length
|
||||
const accuracy = correctCount / totalCount
|
||||
|
||||
return {
|
||||
format: fr.format,
|
||||
accuracy,
|
||||
correctCount,
|
||||
totalCount,
|
||||
}
|
||||
}).sort((a, b) => b.accuracy - a.accuracy)
|
||||
|
||||
lines.push('| Format | Accuracy | Correct/Total |', '|--------|----------|---------------|')
|
||||
|
||||
for (const result of modelResults) {
|
||||
lines.push(`| \`${result.format}\` | ${(result.accuracy * 100).toFixed(1)}% | ${result.correctCount}/${result.totalCount} |`)
|
||||
}
|
||||
|
||||
lines.push('')
|
||||
}
|
||||
|
||||
// Methodology
|
||||
lines.push(
|
||||
'',
|
||||
'#### Methodology',
|
||||
'',
|
||||
'- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).',
|
||||
'- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding.',
|
||||
'- **Question types**: Field retrieval, aggregation, and filtering tasks.',
|
||||
'- **Real data**: Faker.js-generated datasets + GitHub repositories.',
|
||||
'',
|
||||
'</details>',
|
||||
'',
|
||||
)
|
||||
|
||||
return lines.join('\n')
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate token counts for all format+dataset combinations
|
||||
*/
|
||||
export function calculateTokenCounts(
|
||||
formatters: Record<string, (data: any) => string>,
|
||||
): Record<string, number> {
|
||||
const tokenCounts: Record<string, number> = {}
|
||||
|
||||
for (const [formatName, formatter] of Object.entries(formatters)) {
|
||||
for (const dataset of datasets) {
|
||||
const formatted = formatter(dataset.data)
|
||||
const key = `${formatName}-${dataset.name}`
|
||||
tokenCounts[key] = encode(formatted).length
|
||||
}
|
||||
}
|
||||
|
||||
return tokenCounts
|
||||
}
|
||||
|
||||
/**
|
||||
* Save results to disk
|
||||
*/
|
||||
export async function saveResults(
|
||||
results: EvaluationResult[],
|
||||
formatResults: FormatResult[],
|
||||
questions: Question[],
|
||||
tokenCounts: Record<string, number>,
|
||||
): Promise<string> {
|
||||
const resultsDir = path.join(BENCHMARKS_DIR, 'results', 'accuracy')
|
||||
await fsp.mkdir(resultsDir, { recursive: true })
|
||||
|
||||
// Save raw results
|
||||
await fsp.writeFile(
|
||||
path.join(resultsDir, 'raw-results.json'),
|
||||
JSON.stringify(results, undefined, 2),
|
||||
)
|
||||
|
||||
// Save summary
|
||||
await fsp.writeFile(
|
||||
path.join(resultsDir, 'summary.json'),
|
||||
JSON.stringify({
|
||||
formatResults,
|
||||
questions: questions.length,
|
||||
models: Object.keys(models),
|
||||
datasets: datasets.map(d => ({ name: d.name, description: d.description })),
|
||||
tokenCounts,
|
||||
timestamp: new Date().toISOString(),
|
||||
}, undefined, 2),
|
||||
)
|
||||
|
||||
// Generate markdown report
|
||||
const report = generateMarkdownReport(formatResults, results, questions, tokenCounts)
|
||||
await fsp.writeFile(
|
||||
path.join(resultsDir, 'report.md'),
|
||||
report,
|
||||
)
|
||||
|
||||
return resultsDir
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate visual bar chart for token counts
|
||||
*/
|
||||
function createTokenBar(tokens: number, maxTokens: number, width = 30): string {
|
||||
const filled = Math.round((tokens / maxTokens) * width)
|
||||
const empty = width - filled
|
||||
return '█'.repeat(filled) + '░'.repeat(empty)
|
||||
}
|
||||
35
benchmarks/src/types.ts
Normal file
35
benchmarks/src/types.ts
Normal file
@@ -0,0 +1,35 @@
|
||||
export interface Dataset {
|
||||
name: string
|
||||
description: string
|
||||
data: any
|
||||
}
|
||||
|
||||
export interface Question {
|
||||
id: string
|
||||
prompt: string
|
||||
groundTruth: string
|
||||
type: 'field-retrieval' | 'aggregation' | 'filtering' | 'comparison'
|
||||
dataset: string
|
||||
}
|
||||
|
||||
export interface EvaluationResult {
|
||||
questionId: string
|
||||
format: string
|
||||
model: string
|
||||
expected: string
|
||||
actual: string
|
||||
correct: boolean
|
||||
inputTokens: number
|
||||
outputTokens: number
|
||||
latencyMs: number
|
||||
}
|
||||
|
||||
export interface FormatResult {
|
||||
format: string
|
||||
accuracy: number
|
||||
totalTokens: number
|
||||
avgInputTokens: number
|
||||
avgLatency: number
|
||||
correctCount: number
|
||||
totalCount: number
|
||||
}
|
||||
Reference in New Issue
Block a user