test: add LLM retrieval accuracy tests

This commit is contained in:
Johann Schopplich
2025-10-27 11:48:33 +01:00
parent eb8f7e28e1
commit 3c840259fe
25 changed files with 21404 additions and 723 deletions

301
README.md
View File

@@ -42,168 +42,148 @@ users[2]{id,name,role}:
- 📐 **Indentation-based structure:** replaces braces with whitespace for better readability
- 🧺 **Tabular arrays:** declare keys once, then stream rows without repetition
## Token Benchmarks
## Benchmarks
> [!NOTE]
> Benchmarks for LLM accuracy and retrieval are currently in development.
<!-- automd:file src="./benchmarks/results/token-efficiency.md" -->
<!-- automd:file src="./docs/benchmarks.md" -->
### Token Efficiency
| Example | JSON | TOON | Tokens Saved | Reduction |
| ------- | ---- | ---- | ------------ | --------- |
| 👤 Simple user object | 31 | 18 | 13 | **41.9%** |
| 🏷️ User with tags | 48 | 28 | 20 | **41.7%** |
| 📦 Small product catalog | 117 | 49 | 68 | **58.1%** |
| 👥 API response with users | 123 | 53 | 70 | **56.9%** |
| ⚙️ Nested configuration | 68 | 42 | 26 | **38.2%** |
| 🛒 E-commerce order | 163 | 94 | 69 | **42.3%** |
| 📊 Analytics data | 209 | 94 | 115 | **55.0%** |
| 📈 Large dataset (50 records) | 2159 | 762 | 1397 | **64.7%** |
| **Total** | **2918** | **1140** | **1778** | **60.9%** |
```
⭐ GitHub Repositories ██████████████░░░░░░░░░░░ 8,745 tokens (JSON: 15,145) 💰 42.3% saved
📈 Analytics Time Series ██████████░░░░░░░░░░░░░░░ 3,631 tokens (JSON: 9,024) 💰 59.8% saved
👥 API Response ██████████████░░░░░░░░░░░ 2,593 tokens (JSON: 4,589) 💰 43.5% saved
🛒 E-commerce Order ███████████████░░░░░░░░░░ 203 tokens (JSON: 338) 💰 39.9% saved
```
**Total:** 15,172 tokens (TOON) vs 29,096 tokens (JSON) → 47.9% savings
<details>
<summary><strong>View detailed results</strong></summary>
<summary><strong>View detailed examples</strong></summary>
### 📦 Small product catalog
#### ⭐ GitHub Repositories
**Savings: 68 tokens (58.1% reduction)**
**Configuration:** Top 100 GitHub repositories with stars, forks, and metadata
**JSON** (117 tokens):
**Savings:** 6,400 tokens (42.3% reduction)
**JSON** (15,145 tokens):
```json
{
"items": [
"repositories": [
{
"sku": "A1",
"name": "Widget",
"qty": 2,
"price": 9.99
"id": 28457823,
"name": "freeCodeCamp",
"repo": "freeCodeCamp/freeCodeCamp",
"description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,...",
"createdAt": "2014-12-24T17:49:19Z",
"updatedAt": "2025-10-27T07:40:58Z",
"pushedAt": "2025-10-26T11:31:08Z",
"stars": 430828,
"watchers": 8582,
"forks": 42136,
"defaultBranch": "main"
},
{
"sku": "B2",
"name": "Gadget",
"qty": 1,
"price": 14.5
"id": 132750724,
"name": "build-your-own-x",
"repo": "codecrafters-io/build-your-own-x",
"description": "Master programming by recreating your favorite technologies from scratch.",
"createdAt": "2018-05-09T12:03:18Z",
"updatedAt": "2025-10-27T07:43:25Z",
"pushedAt": "2025-10-10T18:45:01Z",
"stars": 430102,
"watchers": 6322,
"forks": 40388,
"defaultBranch": "master"
},
{
"sku": "C3",
"name": "Doohickey",
"qty": 5,
"price": 7.25
"id": 21737465,
"name": "awesome",
"repo": "sindresorhus/awesome",
"description": "😎 Awesome lists about all kinds of interesting topics",
"createdAt": "2014-07-11T13:42:37Z",
"updatedAt": "2025-10-27T07:44:27Z",
"pushedAt": "2025-10-23T17:26:53Z",
"stars": 409760,
"watchers": 8016,
"forks": 32015,
"defaultBranch": "main"
}
]
}
```
**TOON** (49 tokens):
**TOON** (8,745 tokens):
```
items[3]{sku,name,qty,price}:
A1,Widget,2,9.99
B2,Gadget,1,14.5
C3,Doohickey,5,7.25
repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}:
28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,...","2014-12-24T17:49:19Z","2025-10-27T07:40:58Z","2025-10-26T11:31:08Z",430828,8582,42136,main
132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-27T07:43:25Z","2025-10-10T18:45:01Z",430102,6322,40388,master
21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-27T07:44:27Z","2025-10-23T17:26:53Z",409760,8016,32015,main
```
---
### 👥 API response with users
#### 📈 Analytics Time Series
**Savings: 70 tokens (56.9% reduction)**
**Configuration:** 180 days of web metrics (views, clicks, conversions, revenue)
**JSON** (123 tokens):
**Savings:** 5,393 tokens (59.8% reduction)
```json
{
"users": [
{
"id": 1,
"name": "Alice",
"email": "alice@example.com",
"active": true
},
{
"id": 2,
"name": "Bob",
"email": "bob@example.com",
"active": true
},
{
"id": 3,
"name": "Charlie",
"email": "charlie@example.com",
"active": false
}
],
"total": 3,
"page": 1
}
```
**TOON** (53 tokens):
```
users[3]{id,name,email,active}:
1,Alice,alice@example.com,true
2,Bob,bob@example.com,true
3,Charlie,charlie@example.com,false
total: 3
page: 1
```
---
### 📊 Analytics data
**Savings: 115 tokens (55.0% reduction)**
**JSON** (209 tokens):
**JSON** (9,024 tokens):
```json
{
"metrics": [
{
"date": "2024-12-31",
"views": 3769,
"clicks": 400,
"conversions": 59,
"revenue": 198.98
},
{
"date": "2025-01-01",
"views": 1234,
"clicks": 89,
"conversions": 12
"views": 5742,
"clicks": 463,
"conversions": 28,
"revenue": 295.77
},
{
"date": "2025-01-02",
"views": 2345,
"clicks": 156,
"conversions": 23
"views": 3669,
"clicks": 336,
"conversions": 102,
"revenue": 624.23
},
{
"date": "2025-01-03",
"views": 1890,
"clicks": 123,
"conversions": 18
"views": 1332,
"clicks": 304,
"conversions": 99,
"revenue": 113.06
},
{
"date": "2025-01-04",
"views": 3456,
"clicks": 234,
"conversions": 34
},
{
"date": "2025-01-05",
"views": 2789,
"clicks": 178,
"conversions": 27
"views": 1444,
"clicks": 222,
"conversions": 88,
"revenue": 986.69
}
]
}
```
**TOON** (94 tokens):
**TOON** (3,631 tokens):
```
metrics[5]{date,views,clicks,conversions}:
2025-01-01,1234,89,12
2025-01-02,2345,156,23
2025-01-03,1890,123,18
2025-01-04,3456,234,34
2025-01-05,2789,178,27
metrics[5]{date,views,clicks,conversions,revenue}:
2024-12-31,3769,400,59,198.98
2025-01-01,5742,463,28,295.77
2025-01-02,3669,336,102,624.23
2025-01-03,1332,304,99,113.06
2025-01-04,1444,222,88,986.69
```
</details>
@@ -213,6 +193,107 @@ metrics[5]{date,views,clicks,conversions}:
> [!NOTE]
> Measured with [`gpt-tokenizer`](https://github.com/niieani/gpt-tokenizer) using `o200k_base` encoding (used by GPT-5 and other modern models). Savings will vary across models and tokenizers.
<!-- automd:file src="./benchmarks/results/accuracy/report.md" -->
### Retrieval Accuracy
Tested across **2 LLMs** with data retrieval tasks:
```
gpt-4o-mini ██████████████░░░░░░ 72.3% accuracy
claude-haiku-4-5 ███████████████░░░░░ 76.7% accuracy
```
**TOON achieves 73.9% accuracy (vs JSON's 73.6%) while using 46.3% fewer tokens.**
| Format | Accuracy | Average Tokens |
| ------ | -------- | -------------- |
| `toon` | 73.9% | 4.678 |
| `json` | 73.6% | 8.713 |
| `markdown-kv` | 73.6% | 8.649 |
| `csv` | 72.3% | 4.745 |
| `yaml` | 71.7% | 7.091 |
<details>
<summary><strong>View detailed breakdown by dataset and model</strong></summary>
#### Performance by Dataset
##### Uniform employee records (TOON optimal format)
| Format | Accuracy | Tokens | Correct/Total |
|--------|----------|--------|---------------|
| `toon` | 72.4% | 2.483 | 84/116 |
| `csv` | 69.0% | 2.337 | 80/116 |
| `yaml` | 68.1% | 4.969 | 79/116 |
| `markdown-kv` | 68.1% | 6.270 | 79/116 |
| `json` | 68.1% | 6.347 | 79/116 |
##### E-commerce orders with nested structures
| Format | Accuracy | Tokens | Correct/Total |
|--------|----------|--------|---------------|
| `toon` | 84.1% | 5.967 | 74/88 |
| `csv` | 83.0% | 6.735 | 73/88 |
| `yaml` | 81.8% | 7.328 | 72/88 |
| `markdown-kv` | 86.4% | 9.110 | 76/88 |
| `json` | 84.1% | 9.694 | 74/88 |
##### Time-series analytics data
| Format | Accuracy | Tokens | Correct/Total |
|--------|----------|--------|---------------|
| `csv` | 72.4% | 1.393 | 42/58 |
| `toon` | 70.7% | 1.515 | 41/58 |
| `yaml` | 72.4% | 2.938 | 42/58 |
| `json` | 74.1% | 3.665 | 43/58 |
| `markdown-kv` | 70.7% | 3.779 | 41/58 |
##### Popular GitHub repositories
| Format | Accuracy | Tokens | Correct/Total |
|--------|----------|--------|---------------|
| `toon` | 64.3% | 8.745 | 36/56 |
| `csv` | 62.5% | 8.513 | 35/56 |
| `json` | 67.9% | 15.145 | 38/56 |
| `markdown-kv` | 67.9% | 15.436 | 38/56 |
| `yaml` | 62.5% | 13.129 | 35/56 |
#### Performance by Model
##### gpt-4o-mini
| Format | Accuracy | Correct/Total |
|--------|----------|---------------|
| `toon` | 72.3% | 115/159 |
| `json` | 71.7% | 114/159 |
| `markdown-kv` | 70.4% | 112/159 |
| `csv` | 69.2% | 110/159 |
| `yaml` | 68.6% | 109/159 |
##### claude-haiku-4-5
| Format | Accuracy | Correct/Total |
|--------|----------|---------------|
| `markdown-kv` | 76.7% | 122/159 |
| `toon` | 75.5% | 120/159 |
| `json` | 75.5% | 120/159 |
| `csv` | 75.5% | 120/159 |
| `yaml` | 74.8% | 119/159 |
#### Methodology
- **Semantic validation**: LLM-as-judge validates responses semantically (not exact string matching).
- **Token counting**: Using `gpt-tokenizer` with `o200k_base` encoding.
- **Question types**: Field retrieval, aggregation, and filtering tasks.
- **Real data**: Faker.js-generated datasets + GitHub repositories.
</details>
<!-- /automd -->
## Installation
```bash