diff --git a/README.md b/README.md index 7654c92..26ab2b3 100644 --- a/README.md +++ b/README.md @@ -200,14 +200,14 @@ Benchmarks test LLM comprehension across different input formats using 209 data Each format's overall performance, balancing accuracy against token cost: ``` -TOON ████████████████████ 26.9 │ 73.9% acc │ 2,744 tokens +TOON ████████████████████ 26.8 │ 73.9% acc │ 2,759 tokens JSON compact █████████████████░░░ 22.9 │ 70.7% acc │ 3,081 tokens YAML ██████████████░░░░░░ 18.6 │ 69.0% acc │ 3,719 tokens JSON ███████████░░░░░░░░░ 15.3 │ 69.7% acc │ 4,545 tokens XML ██████████░░░░░░░░░░ 13.0 │ 67.1% acc │ 5,167 tokens ``` -TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.6% fewer tokens**. +TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.3% fewer tokens**. **Note on CSV:** Excluded from ranking as it only supports 109 of 209 questions (flat tabular data only). While CSV is highly token-efficient for simple tabular data, it cannot represent nested structures that other formats handle. @@ -250,7 +250,7 @@ grok-4-fast-non-reasoning ``` > [!TIP] Results Summary -> TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.6% fewer tokens** on these datasets. +> TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.3% fewer tokens** on these datasets.
Performance by dataset, model, and question type @@ -282,7 +282,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | -| `toon` | 81.1% | 7,232 | 133/164 | +| `toon` | 81.1% | 7,282 | 133/164 | | `json-compact` | 76.8% | 6,794 | 126/164 | | `yaml` | 75.6% | 8,347 | 124/164 | | `json-pretty` | 76.2% | 10,713 | 125/164 | @@ -315,7 +315,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 63.3% | 4,819 | 76/120 | -| `toon` | 57.5% | 5,799 | 69/120 | +| `toon` | 57.5% | 5,874 | 69/120 | | `json-pretty` | 59.2% | 6,797 | 71/120 | | `yaml` | 48.3% | 5,827 | 58/120 | | `xml` | 46.7% | 7,709 | 56/120 | @@ -325,7 +325,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 92.2% | 574 | 107/116 | -| `toon` | 95.7% | 666 | 111/116 | +| `toon` | 95.7% | 671 | 111/116 | | `yaml` | 91.4% | 686 | 106/116 | | `json-pretty` | 94.0% | 932 | 109/116 | | `xml` | 92.2% | 1,018 | 107/116 | @@ -369,7 +369,7 @@ grok-4-fast-non-reasoning | ------ | -------- | ------ | ------------- | | `csv` | 75.0% | 489 | 3/4 | | `yaml` | 100.0% | 996 | 4/4 | -| `toon` | 100.0% | 1,019 | 4/4 | +| `toon` | 100.0% | 1,039 | 4/4 | | `json-compact` | 75.0% | 790 | 3/4 | | `xml` | 100.0% | 1,458 | 4/4 | | `json-pretty` | 75.0% | 1,274 | 3/4 | @@ -380,7 +380,7 @@ grok-4-fast-non-reasoning | ------ | -------- | ------ | ------------- | | `csv` | 100.0% | 329 | 4/4 | | `xml` | 100.0% | 1,411 | 4/4 | -| `toon` | 75.0% | 983 | 3/4 | +| `toon` | 75.0% | 1,003 | 3/4 | | `yaml` | 25.0% | 960 | 1/4 | | `json-pretty` | 25.0% | 1,230 | 1/4 | | `json-compact` | 0.0% | 755 | 0/4 | @@ -516,34 +516,34 @@ Datasets with nested or semi-uniform structures. CSV excluded as it cannot prope ``` 🛒 E-commerce orders with nested structures ┊ Tabular: 33% │ - TOON █████████████░░░░░░░ 72,771 tokens - ├─ vs JSON (−33.1%) 108,806 tokens - ├─ vs JSON compact (+5.5%) 68,975 tokens - ├─ vs YAML (−14.2%) 84,780 tokens - └─ vs XML (−40.5%) 122,406 tokens + TOON █████████████░░░░░░░ 73,271 tokens + ├─ vs JSON (−32.7%) 108,806 tokens + ├─ vs JSON compact (+6.2%) 68,975 tokens + ├─ vs YAML (−13.6%) 84,780 tokens + └─ vs XML (−40.1%) 122,406 tokens 🧾 Semi-uniform event logs ┊ Tabular: 50% │ - TOON █████████████████░░░ 153,211 tokens - ├─ vs JSON (−15.0%) 180,176 tokens - ├─ vs JSON compact (+19.9%) 127,731 tokens - ├─ vs YAML (−0.8%) 154,505 tokens - └─ vs XML (−25.2%) 204,777 tokens + TOON █████████████████░░░ 155,211 tokens + ├─ vs JSON (−13.9%) 180,176 tokens + ├─ vs JSON compact (+21.5%) 127,731 tokens + ├─ vs YAML (+0.5%) 154,505 tokens + └─ vs XML (−24.2%) 204,777 tokens 🧩 Deeply nested configuration ┊ Tabular: 0% │ - TOON ██████████████░░░░░░ 631 tokens - ├─ vs JSON (−31.3%) 919 tokens - ├─ vs JSON compact (+11.9%) 564 tokens - ├─ vs YAML (−6.2%) 673 tokens - └─ vs XML (−37.4%) 1,008 tokens + TOON ██████████████░░░░░░ 636 tokens + ├─ vs JSON (−30.8%) 919 tokens + ├─ vs JSON compact (+12.8%) 564 tokens + ├─ vs YAML (−5.5%) 673 tokens + └─ vs XML (−36.9%) 1,008 tokens ──────────────────────────────────── Total ──────────────────────────────────── - TOON ████████████████░░░░ 226,613 tokens - ├─ vs JSON (−21.8%) 289,901 tokens - ├─ vs JSON compact (+14.9%) 197,270 tokens - ├─ vs YAML (−5.6%) 239,958 tokens - └─ vs XML (−31.0%) 328,191 tokens + TOON ████████████████░░░░ 229,118 tokens + ├─ vs JSON (−21.0%) 289,901 tokens + ├─ vs JSON compact (+16.1%) 197,270 tokens + ├─ vs YAML (−4.5%) 239,958 tokens + └─ vs XML (−30.2%) 328,191 tokens ``` #### Flat-Only Track @@ -571,19 +571,19 @@ Datasets with flat tabular structures where CSV is applicable. ⭐ Top 100 GitHub repositories ┊ Tabular: 100% │ - CSV ███████████████████░ 8,513 tokens - TOON ████████████████████ 8,745 tokens (+2.7% vs CSV) - ├─ vs JSON (−42.3%) 15,145 tokens - ├─ vs JSON compact (−23.7%) 11,455 tokens - ├─ vs YAML (−33.4%) 13,129 tokens - └─ vs XML (−48.8%) 17,095 tokens + CSV ███████████████████░ 8,512 tokens + TOON ████████████████████ 8,744 tokens (+2.7% vs CSV) + ├─ vs JSON (−42.3%) 15,144 tokens + ├─ vs JSON compact (−23.7%) 11,454 tokens + ├─ vs YAML (−33.4%) 13,128 tokens + └─ vs XML (−48.9%) 17,095 tokens ──────────────────────────────────── Total ──────────────────────────────────── - CSV ███████████████████░ 63,855 tokens - TOON ████████████████████ 67,696 tokens (+6.0% vs CSV) - ├─ vs JSON (−58.8%) 164,255 tokens - ├─ vs JSON compact (−35.2%) 104,527 tokens - ├─ vs YAML (−48.2%) 130,698 tokens + CSV ███████████████████░ 63,854 tokens + TOON ████████████████████ 67,695 tokens (+6.0% vs CSV) + ├─ vs JSON (−58.8%) 164,254 tokens + ├─ vs JSON compact (−35.2%) 104,526 tokens + ├─ vs YAML (−48.2%) 130,697 tokens └─ vs XML (−64.4%) 190,160 tokens ``` @@ -660,7 +660,7 @@ metrics[5]{date,views,clicks,conversions,revenue,bounceRate}: **Savings:** 6,400 tokens (42.3% reduction vs JSON) -**JSON** (15,145 tokens): +**JSON** (15,144 tokens): ```json { @@ -708,7 +708,7 @@ metrics[5]{date,views,clicks,conversions,revenue,bounceRate}: } ``` -**TOON** (8,745 tokens): +**TOON** (8,744 tokens): ``` repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}: diff --git a/benchmarks/results/retrieval-accuracy.md b/benchmarks/results/retrieval-accuracy.md index 868103b..3b48e69 100644 --- a/benchmarks/results/retrieval-accuracy.md +++ b/benchmarks/results/retrieval-accuracy.md @@ -36,14 +36,14 @@ Benchmarks test LLM comprehension across different input formats using 209 data Each format's overall performance, balancing accuracy against token cost: ``` -TOON ████████████████████ 26.9 │ 73.9% acc │ 2,744 tokens +TOON ████████████████████ 26.8 │ 73.9% acc │ 2,759 tokens JSON compact █████████████████░░░ 22.9 │ 70.7% acc │ 3,081 tokens YAML ██████████████░░░░░░ 18.6 │ 69.0% acc │ 3,719 tokens JSON ███████████░░░░░░░░░ 15.3 │ 69.7% acc │ 4,545 tokens XML ██████████░░░░░░░░░░ 13.0 │ 67.1% acc │ 5,167 tokens ``` -TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.6% fewer tokens**. +TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.3% fewer tokens**. **Note on CSV:** Excluded from ranking as it only supports 109 of 209 questions (flat tabular data only). While CSV is highly token-efficient for simple tabular data, it cannot represent nested structures that other formats handle. @@ -86,7 +86,7 @@ grok-4-fast-non-reasoning ``` > [!TIP] Results Summary -> TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.6% fewer tokens** on these datasets. +> TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.3% fewer tokens** on these datasets.
Performance by dataset, model, and question type @@ -118,7 +118,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | -| `toon` | 81.1% | 7,232 | 133/164 | +| `toon` | 81.1% | 7,282 | 133/164 | | `json-compact` | 76.8% | 6,794 | 126/164 | | `yaml` | 75.6% | 8,347 | 124/164 | | `json-pretty` | 76.2% | 10,713 | 125/164 | @@ -151,7 +151,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 63.3% | 4,819 | 76/120 | -| `toon` | 57.5% | 5,799 | 69/120 | +| `toon` | 57.5% | 5,874 | 69/120 | | `json-pretty` | 59.2% | 6,797 | 71/120 | | `yaml` | 48.3% | 5,827 | 58/120 | | `xml` | 46.7% | 7,709 | 56/120 | @@ -161,7 +161,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 92.2% | 574 | 107/116 | -| `toon` | 95.7% | 666 | 111/116 | +| `toon` | 95.7% | 671 | 111/116 | | `yaml` | 91.4% | 686 | 106/116 | | `json-pretty` | 94.0% | 932 | 109/116 | | `xml` | 92.2% | 1,018 | 107/116 | @@ -205,7 +205,7 @@ grok-4-fast-non-reasoning | ------ | -------- | ------ | ------------- | | `csv` | 75.0% | 489 | 3/4 | | `yaml` | 100.0% | 996 | 4/4 | -| `toon` | 100.0% | 1,019 | 4/4 | +| `toon` | 100.0% | 1,039 | 4/4 | | `json-compact` | 75.0% | 790 | 3/4 | | `xml` | 100.0% | 1,458 | 4/4 | | `json-pretty` | 75.0% | 1,274 | 3/4 | @@ -216,7 +216,7 @@ grok-4-fast-non-reasoning | ------ | -------- | ------ | ------------- | | `csv` | 100.0% | 329 | 4/4 | | `xml` | 100.0% | 1,411 | 4/4 | -| `toon` | 75.0% | 983 | 3/4 | +| `toon` | 75.0% | 1,003 | 3/4 | | `yaml` | 25.0% | 960 | 1/4 | | `json-pretty` | 25.0% | 1,230 | 1/4 | | `json-compact` | 0.0% | 755 | 0/4 | diff --git a/benchmarks/results/token-efficiency.md b/benchmarks/results/token-efficiency.md index 999d1ba..fca2ac1 100644 --- a/benchmarks/results/token-efficiency.md +++ b/benchmarks/results/token-efficiency.md @@ -5,34 +5,34 @@ Datasets with nested or semi-uniform structures. CSV excluded as it cannot prope ``` 🛒 E-commerce orders with nested structures ┊ Tabular: 33% │ - TOON █████████████░░░░░░░ 72,771 tokens - ├─ vs JSON (−33.1%) 108,806 tokens - ├─ vs JSON compact (+5.5%) 68,975 tokens - ├─ vs YAML (−14.2%) 84,780 tokens - └─ vs XML (−40.5%) 122,406 tokens + TOON █████████████░░░░░░░ 73,271 tokens + ├─ vs JSON (−32.7%) 108,806 tokens + ├─ vs JSON compact (+6.2%) 68,975 tokens + ├─ vs YAML (−13.6%) 84,780 tokens + └─ vs XML (−40.1%) 122,406 tokens 🧾 Semi-uniform event logs ┊ Tabular: 50% │ - TOON █████████████████░░░ 153,211 tokens - ├─ vs JSON (−15.0%) 180,176 tokens - ├─ vs JSON compact (+19.9%) 127,731 tokens - ├─ vs YAML (−0.8%) 154,505 tokens - └─ vs XML (−25.2%) 204,777 tokens + TOON █████████████████░░░ 155,211 tokens + ├─ vs JSON (−13.9%) 180,176 tokens + ├─ vs JSON compact (+21.5%) 127,731 tokens + ├─ vs YAML (+0.5%) 154,505 tokens + └─ vs XML (−24.2%) 204,777 tokens 🧩 Deeply nested configuration ┊ Tabular: 0% │ - TOON ██████████████░░░░░░ 631 tokens - ├─ vs JSON (−31.3%) 919 tokens - ├─ vs JSON compact (+11.9%) 564 tokens - ├─ vs YAML (−6.2%) 673 tokens - └─ vs XML (−37.4%) 1,008 tokens + TOON ██████████████░░░░░░ 636 tokens + ├─ vs JSON (−30.8%) 919 tokens + ├─ vs JSON compact (+12.8%) 564 tokens + ├─ vs YAML (−5.5%) 673 tokens + └─ vs XML (−36.9%) 1,008 tokens ──────────────────────────────────── Total ──────────────────────────────────── - TOON ████████████████░░░░ 226,613 tokens - ├─ vs JSON (−21.8%) 289,901 tokens - ├─ vs JSON compact (+14.9%) 197,270 tokens - ├─ vs YAML (−5.6%) 239,958 tokens - └─ vs XML (−31.0%) 328,191 tokens + TOON ████████████████░░░░ 229,118 tokens + ├─ vs JSON (−21.0%) 289,901 tokens + ├─ vs JSON compact (+16.1%) 197,270 tokens + ├─ vs YAML (−4.5%) 239,958 tokens + └─ vs XML (−30.2%) 328,191 tokens ``` #### Flat-Only Track @@ -60,19 +60,19 @@ Datasets with flat tabular structures where CSV is applicable. ⭐ Top 100 GitHub repositories ┊ Tabular: 100% │ - CSV ███████████████████░ 8,513 tokens - TOON ████████████████████ 8,745 tokens (+2.7% vs CSV) - ├─ vs JSON (−42.3%) 15,145 tokens - ├─ vs JSON compact (−23.7%) 11,455 tokens - ├─ vs YAML (−33.4%) 13,129 tokens - └─ vs XML (−48.8%) 17,095 tokens + CSV ███████████████████░ 8,512 tokens + TOON ████████████████████ 8,744 tokens (+2.7% vs CSV) + ├─ vs JSON (−42.3%) 15,144 tokens + ├─ vs JSON compact (−23.7%) 11,454 tokens + ├─ vs YAML (−33.4%) 13,128 tokens + └─ vs XML (−48.9%) 17,095 tokens ──────────────────────────────────── Total ──────────────────────────────────── - CSV ███████████████████░ 63,855 tokens - TOON ████████████████████ 67,696 tokens (+6.0% vs CSV) - ├─ vs JSON (−58.8%) 164,255 tokens - ├─ vs JSON compact (−35.2%) 104,527 tokens - ├─ vs YAML (−48.2%) 130,698 tokens + CSV ███████████████████░ 63,854 tokens + TOON ████████████████████ 67,695 tokens (+6.0% vs CSV) + ├─ vs JSON (−58.8%) 164,254 tokens + ├─ vs JSON compact (−35.2%) 104,526 tokens + ├─ vs YAML (−48.2%) 130,697 tokens └─ vs XML (−64.4%) 190,160 tokens ``` @@ -149,7 +149,7 @@ metrics[5]{date,views,clicks,conversions,revenue,bounceRate}: **Savings:** 6,400 tokens (42.3% reduction vs JSON) -**JSON** (15,145 tokens): +**JSON** (15,144 tokens): ```json { @@ -197,7 +197,7 @@ metrics[5]{date,views,clicks,conversions,revenue,bounceRate}: } ``` -**TOON** (8,745 tokens): +**TOON** (8,744 tokens): ``` repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}: diff --git a/docs/guide/benchmarks.md b/docs/guide/benchmarks.md index e0d2a37..380a082 100644 --- a/docs/guide/benchmarks.md +++ b/docs/guide/benchmarks.md @@ -52,14 +52,14 @@ Benchmarks test LLM comprehension across different input formats using 209 data Each format's overall performance, balancing accuracy against token cost: ``` -TOON ████████████████████ 26.9 │ 73.9% acc │ 2,744 tokens +TOON ████████████████████ 26.8 │ 73.9% acc │ 2,759 tokens JSON compact █████████████████░░░ 22.9 │ 70.7% acc │ 3,081 tokens YAML ██████████████░░░░░░ 18.6 │ 69.0% acc │ 3,719 tokens JSON ███████████░░░░░░░░░ 15.3 │ 69.7% acc │ 4,545 tokens XML ██████████░░░░░░░░░░ 13.0 │ 67.1% acc │ 5,167 tokens ``` -TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.6% fewer tokens**. +TOON achieves **73.9%** accuracy (vs JSON's 69.7%) while using **39.3% fewer tokens**. **Note on CSV:** Excluded from ranking as it only supports 109 of 209 questions (flat tabular data only). While CSV is highly token-efficient for simple tabular data, it cannot represent nested structures that other formats handle. @@ -102,7 +102,7 @@ grok-4-fast-non-reasoning ``` > [!TIP] Results Summary -> TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.6% fewer tokens** on these datasets. +> TOON achieves **73.9% accuracy** (vs JSON's 69.7%) while using **39.3% fewer tokens** on these datasets.
Performance by dataset, model, and question type @@ -134,7 +134,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | -| `toon` | 81.1% | 7,232 | 133/164 | +| `toon` | 81.1% | 7,282 | 133/164 | | `json-compact` | 76.8% | 6,794 | 126/164 | | `yaml` | 75.6% | 8,347 | 124/164 | | `json-pretty` | 76.2% | 10,713 | 125/164 | @@ -167,7 +167,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 63.3% | 4,819 | 76/120 | -| `toon` | 57.5% | 5,799 | 69/120 | +| `toon` | 57.5% | 5,874 | 69/120 | | `json-pretty` | 59.2% | 6,797 | 71/120 | | `yaml` | 48.3% | 5,827 | 58/120 | | `xml` | 46.7% | 7,709 | 56/120 | @@ -177,7 +177,7 @@ grok-4-fast-non-reasoning | Format | Accuracy | Tokens | Correct/Total | | ------ | -------- | ------ | ------------- | | `json-compact` | 92.2% | 574 | 107/116 | -| `toon` | 95.7% | 666 | 111/116 | +| `toon` | 95.7% | 671 | 111/116 | | `yaml` | 91.4% | 686 | 106/116 | | `json-pretty` | 94.0% | 932 | 109/116 | | `xml` | 92.2% | 1,018 | 107/116 | @@ -221,7 +221,7 @@ grok-4-fast-non-reasoning | ------ | -------- | ------ | ------------- | | `csv` | 75.0% | 489 | 3/4 | | `yaml` | 100.0% | 996 | 4/4 | -| `toon` | 100.0% | 1,019 | 4/4 | +| `toon` | 100.0% | 1,039 | 4/4 | | `json-compact` | 75.0% | 790 | 3/4 | | `xml` | 100.0% | 1,458 | 4/4 | | `json-pretty` | 75.0% | 1,274 | 3/4 | @@ -232,7 +232,7 @@ grok-4-fast-non-reasoning | ------ | -------- | ------ | ------------- | | `csv` | 100.0% | 329 | 4/4 | | `xml` | 100.0% | 1,411 | 4/4 | -| `toon` | 75.0% | 983 | 3/4 | +| `toon` | 75.0% | 1,003 | 3/4 | | `yaml` | 25.0% | 960 | 1/4 | | `json-pretty` | 25.0% | 1,230 | 1/4 | | `json-compact` | 0.0% | 755 | 0/4 | @@ -368,34 +368,34 @@ Datasets with nested or semi-uniform structures. CSV excluded as it cannot prope ``` 🛒 E-commerce orders with nested structures ┊ Tabular: 33% │ - TOON █████████████░░░░░░░ 72,771 tokens - ├─ vs JSON (−33.1%) 108,806 tokens - ├─ vs JSON compact (+5.5%) 68,975 tokens - ├─ vs YAML (−14.2%) 84,780 tokens - └─ vs XML (−40.5%) 122,406 tokens + TOON █████████████░░░░░░░ 73,271 tokens + ├─ vs JSON (−32.7%) 108,806 tokens + ├─ vs JSON compact (+6.2%) 68,975 tokens + ├─ vs YAML (−13.6%) 84,780 tokens + └─ vs XML (−40.1%) 122,406 tokens 🧾 Semi-uniform event logs ┊ Tabular: 50% │ - TOON █████████████████░░░ 153,211 tokens - ├─ vs JSON (−15.0%) 180,176 tokens - ├─ vs JSON compact (+19.9%) 127,731 tokens - ├─ vs YAML (−0.8%) 154,505 tokens - └─ vs XML (−25.2%) 204,777 tokens + TOON █████████████████░░░ 155,211 tokens + ├─ vs JSON (−13.9%) 180,176 tokens + ├─ vs JSON compact (+21.5%) 127,731 tokens + ├─ vs YAML (+0.5%) 154,505 tokens + └─ vs XML (−24.2%) 204,777 tokens 🧩 Deeply nested configuration ┊ Tabular: 0% │ - TOON ██████████████░░░░░░ 631 tokens - ├─ vs JSON (−31.3%) 919 tokens - ├─ vs JSON compact (+11.9%) 564 tokens - ├─ vs YAML (−6.2%) 673 tokens - └─ vs XML (−37.4%) 1,008 tokens + TOON ██████████████░░░░░░ 636 tokens + ├─ vs JSON (−30.8%) 919 tokens + ├─ vs JSON compact (+12.8%) 564 tokens + ├─ vs YAML (−5.5%) 673 tokens + └─ vs XML (−36.9%) 1,008 tokens ──────────────────────────────────── Total ──────────────────────────────────── - TOON ████████████████░░░░ 226,613 tokens - ├─ vs JSON (−21.8%) 289,901 tokens - ├─ vs JSON compact (+14.9%) 197,270 tokens - ├─ vs YAML (−5.6%) 239,958 tokens - └─ vs XML (−31.0%) 328,191 tokens + TOON ████████████████░░░░ 229,118 tokens + ├─ vs JSON (−21.0%) 289,901 tokens + ├─ vs JSON compact (+16.1%) 197,270 tokens + ├─ vs YAML (−4.5%) 239,958 tokens + └─ vs XML (−30.2%) 328,191 tokens ``` #### Flat-Only Track @@ -423,19 +423,19 @@ Datasets with flat tabular structures where CSV is applicable. ⭐ Top 100 GitHub repositories ┊ Tabular: 100% │ - CSV ███████████████████░ 8,513 tokens - TOON ████████████████████ 8,745 tokens (+2.7% vs CSV) - ├─ vs JSON (−42.3%) 15,145 tokens - ├─ vs JSON compact (−23.7%) 11,455 tokens - ├─ vs YAML (−33.4%) 13,129 tokens - └─ vs XML (−48.8%) 17,095 tokens + CSV ███████████████████░ 8,512 tokens + TOON ████████████████████ 8,744 tokens (+2.7% vs CSV) + ├─ vs JSON (−42.3%) 15,144 tokens + ├─ vs JSON compact (−23.7%) 11,454 tokens + ├─ vs YAML (−33.4%) 13,128 tokens + └─ vs XML (−48.9%) 17,095 tokens ──────────────────────────────────── Total ──────────────────────────────────── - CSV ███████████████████░ 63,855 tokens - TOON ████████████████████ 67,696 tokens (+6.0% vs CSV) - ├─ vs JSON (−58.8%) 164,255 tokens - ├─ vs JSON compact (−35.2%) 104,527 tokens - ├─ vs YAML (−48.2%) 130,698 tokens + CSV ███████████████████░ 63,854 tokens + TOON ████████████████████ 67,695 tokens (+6.0% vs CSV) + ├─ vs JSON (−58.8%) 164,254 tokens + ├─ vs JSON compact (−35.2%) 104,526 tokens + ├─ vs YAML (−48.2%) 130,697 tokens └─ vs XML (−64.4%) 190,160 tokens ``` @@ -512,7 +512,7 @@ metrics[5]{date,views,clicks,conversions,revenue,bounceRate}: **Savings:** 6,400 tokens (42.3% reduction vs JSON) -**JSON** (15,145 tokens): +**JSON** (15,144 tokens): ```json { @@ -560,7 +560,7 @@ metrics[5]{date,views,clicks,conversions,revenue,bounceRate}: } ``` -**TOON** (8,745 tokens): +**TOON** (8,744 tokens): ``` repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}: